Abstract:Objective: Shoulder exoskeletons can effectively assist with overhead work. However, their impacts on muscle synergy remain unclear. The objective is to systematically investigate the effects of the shoulder exoskeleton on muscle synergies during overhead work.Methods: Eight male participants were recruited to perform a screwing task both with (Intervention) and without (Normal) the exoskeleton. Eight muscles were monitored and muscle synergies were extracted using non-negative matrix factorization and electromyographic topographic maps. Results: The number of synergies extracted was the same (n = 2) in both conditions. Specifically, the first synergies in both conditions were identical, with the highest weight of AD and MD; while the second synergies were different between conditions, with highest weight of PM and MD, respectively. As for the first synergy in the Intervention condition, the activation profile significantly decreased, and the average recruitment level and activation duration were significantly lower (p<0.05). The regression analysis for the muscle synergies across conditions shows the changes of muscle synergies did not influence the sparseness of muscle synergies (p=0.7341). In the topographic maps, the mean value exhibited a significant decrease (p<0.001) and the entropy significantly increased (p<0.01). Conclusion: The exoskeleton does not alter the number of synergies and existing major synergies but may induce new synergies. It can also significantly decrease neural activation and may influence the heterogeneity of the distribution of monitored muscle activations. Significance: This study provides insights into the potential mechanisms of exoskeleton-assisted overhead work and guidance on improving the performance of exoskeletons.
Abstract:Objective: Overhead tasks are a primary inducement to work-related musculoskeletal disorders. Aiming to reduce shoulder physical loads, passive shoulder exoskeletons are increasingly prevalent in the industry due to their lightweight, affordability, and effectiveness. However, they can only handle specific tasks and struggle to balance compactness with a sufficient range of motion effectively. Method: We proposed a novel passive occupational shoulder exoskeleton designed to handle various overhead tasks at different arm elevation angles, ensuring sufficient ROM while maintaining compactness. By formulating kinematic models and simulations, an ergonomic shoulder structure was developed. Then, we presented a torque generator equipped with an adjustable peak assistive torque angle to switch between low and high assistance phases through a passive clutch mechanism. Ten healthy participants were recruited to validate its functionality by performing the screwing task. Results: Measured range of motion results demonstrated that the exoskeleton can ensure a sufficient ROM in both sagittal (164$^\circ$) and horizontal (158$^\circ$) flexion/extension movements. The experimental results of the screwing task showed that the exoskeleton could reduce muscle activation (up to 49.6%), perceived effort and frustration, and provide an improved user experience (scored 79.7 out of 100). Conclusion: These results indicate that the proposed exoskeleton can guarantee natural movements and provide efficient assistance during overhead work, and thus have the potential to reduce the risk of musculoskeletal disorders. Significance: The proposed exoskeleton provides insights into multi-task adaptability and efficient assistance, highlighting the potential for expanding the application of exoskeletons.
Abstract:An essential premise for neuroscience brain network analysis is the successful segmentation of the cerebral cortex into functionally homogeneous regions. Resting-state functional magnetic resonance imaging (rs-fMRI), capturing the spontaneous activities of the brain, provides the potential for cortical parcellation. Previous parcellation methods can be roughly categorized into three groups, mainly employing either local gradient, global similarity, or a combination of both. The traditional clustering algorithms, such as "K-means" and "Spectral clustering" may affect the reproducibility or the biological interpretation of parcellations; The region growing-based methods influence the expression of functional homogeneity in the brain at a large scale; The parcellation method based on probabilistic graph models inevitably introduce model assumption biases. In this work, we develop an assumption-free model called as BDEC, which leverages the robust data fitting capability of deep learning. To the best of our knowledge, this is the first study that uses deep learning algorithm for rs-fMRI-based parcellation. By comparing with nine commonly used brain parcellation methods, the BDEC model demonstrates significantly superior performance in various functional homogeneity indicators. Furthermore, it exhibits favorable results in terms of validity, network analysis, task homogeneity, and generalization capability. These results suggest that the BDEC parcellation captures the functional characteristics of the brain and holds promise for future voxel-wise brain network analysis in the dimensionality reduction of fMRI data.