Abstract:Alcohol Use Disorder (AUD) is a major concern for public health organizations worldwide, especially as regards the adolescent population. The consumption of alcohol in adolescents is known to be influenced by seeing friends and even parents drinking alcohol. Building on this fact, a number of studies into alcohol consumption among adolescents have made use of Social Network Analysis (SNA) techniques to study the different social networks (peers, friends, family, etc.) with whom the adolescent is involved. These kinds of studies need an initial phase of data gathering by means of questionnaires and a subsequent analysis phase using the SNA techniques. The process involves a number of manual data handling stages that are time consuming and error-prone. The use of knowledge engineering techniques (including the construction of a domain ontology) to represent the information, allows the automation of all the activities, from the initial data collection to the results of the SNA study. This paper shows how a knowledge model is constructed, and compares the results obtained using the traditional method with this, fully automated model, detailing the main advantages of the latter. In the case of the SNA analysis, the validity of the results obtained with the knowledge engineering approach are compared to those obtained manually using the UCINET, Cytoscape, Pajek and Gephi to test the accuracy of the knowledge model.
Abstract:This work addresses the performance comparison between four clustering techniques with the objective of achieving strong hybrid models in supervised learning tasks. A real dataset from a bio-climatic house named Sotavento placed on experimental wind farm and located in Xermade (Lugo) in Galicia (Spain) has been collected. Authors have chosen the thermal solar generation system in order to study how works applying several cluster methods followed by a regression technique to predict the output temperature of the system. With the objective of defining the quality of each clustering method two possible solutions have been implemented. The first one is based on three unsupervised learning metrics (Silhouette, Calinski-Harabasz and Davies-Bouldin) while the second one, employs the most common error measurements for a regression algorithm such as Multi Layer Perceptron.
Abstract:Glioblastoma is a highly malignant brain tumor with a life expectancy of only 3 to 6 months without treatment. Detecting and predicting its survival and grade accurately are crucial. This study introduces a novel approach using transfer learning techniques. Various pre-trained networks, including EfficientNet, ResNet, VGG16, and Inception, were tested through exhaustive optimization to identify the most suitable architecture. Transfer learning was applied to fine-tune these models on a glioblastoma image dataset, aiming to achieve two objectives: survival and tumor grade prediction.The experimental results show 65% accuracy in survival prediction, classifying patients into short, medium, or long survival categories. Additionally, the prediction of tumor grade achieved an accuracy of 97%, accurately differentiating low-grade gliomas (LGG) and high-grade gliomas (HGG). The success of the approach is attributed to the effectiveness of transfer learning, surpassing the current state-of-the-art methods. In conclusion, this study presents a promising method for predicting the survival and grade of glioblastoma. Transfer learning demonstrates its potential in enhancing prediction models, particularly in scenarios with limited large datasets. These findings hold promise for improving diagnostic and treatment approaches for glioblastoma patients.
Abstract:The aim of this paper was the detection of pathologies through respiratory sounds. The ICBHI (International Conference on Biomedical and Health Informatics) Benchmark was used. This dataset is composed of 920 sounds of which 810 are of chronic diseases, 75 of non-chronic diseases and only 35 of healthy individuals. As more than 88% of the samples of the dataset are from the same class (Chronic), the use of a Variational Convolutional Autoencoder was proposed to generate new labeled data and other well known oversampling techniques after determining that the dataset classes are unbalanced. Once the preprocessing step was carried out, a Convolutional Neural Network (CNN) was used to classify the respiratory sounds into healthy, chronic, and non-chronic disease. In addition, we carried out a more challenging classification trying to distinguish between the different types of pathologies or healthy: URTI, COPD, Bronchiectasis, Pneumonia, and Bronchiolitis. We achieved results up to 0.993 F-Score in the three-label classification and 0.990 F-Score in the more challenging six-class classification.
Abstract:Background and objective: Diabetes is a chronic pathology which is affecting more and more people over the years. It gives rise to a large number of deaths each year. Furthermore, many people living with the disease do not realize the seriousness of their health status early enough. Late diagnosis brings about numerous health problems and a large number of deaths each year so the development of methods for the early diagnosis of this pathology is essential. Methods: In this paper, a pipeline based on deep learning techniques is proposed to predict diabetic people. It includes data augmentation using a variational autoencoder (VAE), feature augmentation using an sparse autoencoder (SAE) and a convolutional neural network for classification. Pima Indians Diabetes Database, which takes into account information on the patients such as the number of pregnancies, glucose or insulin level, blood pressure or age, has been evaluated. Results: A 92.31% of accuracy was obtained when CNN classifier is trained jointly the SAE for featuring augmentation over a well balanced dataset. This means an increment of 3.17% of accuracy with respect the state-of-the-art. Conclusions: Using a full deep learning pipeline for data preprocessing and classification has demonstrate to be very promising in the diabetes detection field outperforming the state-of-the-art proposals.
Abstract:In this work, a sentiment analysis method that is capable of accepting audio of any length, without being fixed a priori, is proposed. Mel spectrogram and Mel Frequency Cepstral Coefficients are used as audio description methods and a Fully Convolutional Neural Network architecture is proposed as a classifier. The results have been validated using three well known datasets: EMODB, RAVDESS, and TESS. The results obtained were promising, outperforming the state-of-the-art methods. Also, thanks to the fact that the proposed method admits audios of any size, it allows a sentiment analysis to be made in near real time, which is very interesting for a wide range of fields such as call centers, medical consultations, or financial brokers.