Abstract:AI development is shaped by academics and industry leaders - let us call them ``influencers'' - but it is unclear how their views align with those of the public. To address this gap, we developed an interactive platform that served as a data collection tool for exploring public views on AI, including their fears, hopes, and overall sense of hopefulness. We made the platform available to 330 participants representative of the U.S. population in terms of age, sex, ethnicity, and political leaning, and compared their views with those of 100 AI influencers identified by Time magazine. The public fears AI getting out of control, while influencers emphasize regulation, seemingly to deflect attention from their alleged focus on monetizing AI's potential. Interestingly, the views of AI influencers from underrepresented groups such as women and people of color often differ from the views of underrepresented groups in the public.
Abstract:Sunlight and shadow play critical roles in how urban spaces are utilized, thrive, and grow. While access to sunlight is essential to the success of urban environments, shadows can provide shaded places to stay during the hot seasons, mitigate heat island effect, and increase pedestrian comfort levels. Properly quantifying sunlight access and shadows in large urban environments is key in tackling some of the important challenges facing cities today. In this paper, we propose Deep Umbra, a novel computational framework that enables the quantification of sunlight access and shadows at a global scale. Our framework is based on a conditional generative adversarial network that considers the physical form of cities to compute high-resolution spatial information of accumulated sunlight access for the different seasons of the year. We use data from seven different cities to train our model, and show, through an extensive set of experiments, its low overall RMSE (below 0.1) as well as its extensibility to cities that were not part of the training set. Additionally, we contribute a set of case studies and a comprehensive dataset with sunlight access information for more than 100 cities across six continents of the world. Deep Umbra is available at https://urbantk.org/shadows.