Abstract:The growing emphasis on energy efficiency and environmental sustainability in global supply chains introduces new challenges in the deployment of hyperconnected logistic hub networks. In current volatile, uncertain, complex, and ambiguous (VUCA) environments, dynamic risk assessment becomes essential to ensure successful hub deployment. However, traditional methods often struggle to effectively capture and analyze unstructured information. In this paper, we design an Large Language Model (LLM)-driven risk assessment pipeline integrated with multiple analytical tools to evaluate logistic hub deployment. This framework enables LLMs to systematically identify potential risks by analyzing unstructured data, such as geopolitical instability, financial trends, historical storm events, traffic conditions, and emerging risks from news sources. These data are processed through a suite of analytical tools, which are automatically called by LLMs to support a structured and data-driven decision-making process for logistic hub selection. In addition, we design prompts that instruct LLMs to leverage these tools for assessing the feasibility of hub selection by evaluating various risk types and levels. Through risk-based similarity analysis, LLMs cluster logistic hubs with comparable risk profiles, enabling a structured approach to risk assessment. In conclusion, the framework incorporates scalability with long-term memory and enhances decision-making through explanation and interpretation, enabling comprehensive risk assessments for logistic hub deployment in hyperconnected supply chain networks.
Abstract:The workload of real-time rendering is steeply increasing as the demand for high resolution, high refresh rates, and high realism rises, overwhelming most graphics cards. To mitigate this problem, one of the most popular solutions is to render images at a low resolution to reduce rendering overhead, and then manage to accurately upsample the low-resolution rendered image to the target resolution, a.k.a. super-resolution techniques. Most existing methods focus on exploiting information from low-resolution inputs, such as historical frames. The absence of high frequency details in those LR inputs makes them hard to recover fine details in their high-resolution predictions. In this paper, we propose an efficient and effective super-resolution method that predicts high-quality upsampled reconstructions utilizing low-cost high-resolution auxiliary G-Buffers as additional input. With LR images and HR G-buffers as input, the network requires to align and fuse features at multi resolution levels. We introduce an efficient and effective H-Net architecture to solve this problem and significantly reduce rendering overhead without noticeable quality deterioration. Experiments show that our method is able to produce temporally consistent reconstructions in $4 \times 4$ and even challenging $8 \times 8$ upsampling cases at 4K resolution with real-time performance, with substantially improved quality and significant performance boost compared to existing works.