Abstract:Integrated data and energy transfer (IDET) is considered as a key enabler of 6G, as it can provide both wireless energy transfer (WET) and wireless data transfer (WDT) services towards low power devices. Thanks to the extra degree of freedom provided by fluid antenna (FA), incorporating FA into IDET systems presents a promising approach to enhance energy efficiency performance. This paper investigates a FA assisted IDET system, where the transmitter is equipped with multiple FAs and transmits wireless signals to the data receiver (DR) and the energy receiver (ER), which are both equipped with a single traditional antenna. The switching delay and energy consumption induced by port selection are taken into account in IDET system for the first time. We aim to obtain the optimal beamforming vector and the port selection strategy at the transmitter, in order to maximize the short-term and long-term WET efficiency, respectively. The instant sub-optimal solution is obtained by alternatively optimizing the beamforming vector and port selection in each transmission frame, while a novel constrained soft actor critic (C-SAC) algorithm is proposed to find the feasible policy of port selection from the long-term perspective. Simulation results demonstrate that our scheme is able to achieve greater gain in terms of both the short-term and long-term WET efficiency compared to other benchmarks, while not degrading WDT performance.
Abstract:Integrated sensing and communication (ISAC) unifies wireless communication and sensing by sharing spectrum and hardware, which often incurs trade-offs between two functions due to limited resources. However, this paper shifts focus to exploring the synergy between communication and sensing, using WiFi sensing as an exemplary scenario where communication signals are repurposed to probe the environment without dedicated sensing waveforms, followed by data uploading to the edge server for inference. While increased device participation enhances multi-view sensing data, it also imposes significant communication overhead between devices and the edge server. To address this challenge, we aim to maximize the sensing task performance, measured by mutual information, under the channel capacity constraint. The information-theoretic optimization problem is solved by the proposed ADE-MI, a novel framework that employs a two-stage optimization two-stage optimization approach: (1) adaptive distributed encoding (ADE) at the device, which ensures transmitted bits are most relevant to sensing tasks, and (2) multi-view Inference (MI) at the edge server, which orchestrates multi-view data from distributed devices. Our experimental results highlight the synergy between communication and sensing, showing that more frequent communication from WiFi access points to edge devices improves sensing inference accuracy. The proposed ADE-MI achieves 92\% recognition accuracy with over $10^4$-fold reduction in latency compared to schemes with raw data communication, achieving both high sensing inference accuracy and low communication latency simultaneously.