Abstract:Among the many variants of RL, an important class of problems is where the state and action spaces are continuous -- autonomous robots, autonomous vehicles, optimal control are all examples of such problems that can lend themselves naturally to reinforcement based algorithms, and have continuous state and action spaces. In this paper, we introduce a prioritized form of a combination of state-of-the-art approaches such as Deep Q-learning (DQN) and Deep Deterministic Policy Gradient (DDPG) to outperform the earlier results for continuous state and action space problems. Our experiments also involve the use of parameter noise during training resulting in more robust deep RL models outperforming the earlier results significantly. We believe these results are a valuable addition for continuous state and action space problems.
Abstract:Semantic face editing of real world facial images is an important application of generative models. Recently, multiple works have explored possible techniques to generate such modifications using the latent structure of pre-trained GAN models. However, such approaches often require training an encoder network and that is typically a time-consuming and resource intensive process. A possible alternative to such a GAN-based architecture can be styleALAE, a latent-space based autoencoder that can generate photo-realistic images of high quality. Unfortunately, the reconstructed image in styleALAE does not preserve the identity of the input facial image. This limits the application of styleALAE for semantic face editing of images with known identities. In our work, we use a recent advancement in one-shot domain adaptation to address this problem. Our work ensures that the identity of the reconstructed image is the same as the given input image. We further generate semantic modifications over the reconstructed image by using the latent space of the pre-trained styleALAE model. Results show that our approach can generate semantic modifications on any real world facial image while preserving the identity.