Abstract:We propose a novel approach to learn relational policies for classical planning based on learning to rank actions. We introduce a new graph representation that explicitly captures action information and propose a Graph Neural Network architecture augmented with Gated Recurrent Units (GRUs) to learn action rankings. Our model is trained on small problem instances and generalizes to significantly larger instances where traditional planning becomes computationally expensive. Experimental results across standard planning benchmarks demonstrate that our action-ranking approach achieves generalization to significantly larger problems than those used in training.
Abstract:We present an online planning framework for solving multi-object rearrangement problems in partially observable, multi-room environments. Current object rearrangement solutions, primarily based on Reinforcement Learning or hand-coded planning methods, often lack adaptability to diverse challenges. To address this limitation, we introduce a novel Hierarchical Object-Oriented Partially Observed Markov Decision Process (HOO-POMDP) planning approach. This approach comprises of (a) an object-oriented POMDP planner generating sub-goals, (b) a set of low-level policies for sub-goal achievement, and (c) an abstraction system converting the continuous low-level world into a representation suitable for abstract planning. We evaluate our system on varying numbers of objects, rooms, and problem types in AI2-THOR simulated environments with promising results.
Abstract:Among the many variants of RL, an important class of problems is where the state and action spaces are continuous -- autonomous robots, autonomous vehicles, optimal control are all examples of such problems that can lend themselves naturally to reinforcement based algorithms, and have continuous state and action spaces. In this paper, we introduce a prioritized form of a combination of state-of-the-art approaches such as Deep Q-learning (DQN) and Deep Deterministic Policy Gradient (DDPG) to outperform the earlier results for continuous state and action space problems. Our experiments also involve the use of parameter noise during training resulting in more robust deep RL models outperforming the earlier results significantly. We believe these results are a valuable addition for continuous state and action space problems.