Abstract:In today's world, machine learning is hard to imagine without large training datasets and models. This has led to the use of stochastic methods for training, such as stochastic gradient descent (SGD). SGD provides weak theoretical guarantees of convergence, but there are modifications, such as Stochastic Variance Reduced Gradient (SVRG) and StochAstic Recursive grAdient algoritHm (SARAH), that can reduce the variance. These methods require the computation of the full gradient occasionally, which can be time consuming. In this paper, we explore variants of variance reduction algorithms that eliminate the need for full gradient computations. To make our approach memory-efficient and avoid full gradient computations, we use two key techniques: the shuffling heuristic and idea of SAG/SAGA methods. As a result, we improve existing estimates for variance reduction algorithms without the full gradient computations. Additionally, for the non-convex objective function, our estimate matches that of classic shuffling methods, while for the strongly convex one, it is an improvement. We conduct comprehensive theoretical analysis and provide extensive experimental results to validate the efficiency and practicality of our methods for large-scale machine learning problems.
Abstract:The distributed optimization problem has become increasingly relevant recently. It has a lot of advantages such as processing a large amount of data in less time compared to non-distributed methods. However, most distributed approaches suffer from a significant bottleneck - the cost of communications. Therefore, a large amount of research has recently been directed at solving this problem. One such approach uses local data similarity. In particular, there exists an algorithm provably optimally exploiting the similarity property. But this result, as well as results from other works solve the communication bottleneck by focusing only on the fact that communication is significantly more expensive than local computing and does not take into account the various capacities of network devices and the different relationship between communication time and local computing expenses. We consider this setup and the objective of this study is to achieve an optimal ratio of distributed data between the server and local machines for any costs of communications and local computations. The running times of the network are compared between uniform and optimal distributions. The superior theoretical performance of our solutions is experimentally validated.