Abstract:In a rapidly evolving knowledge landscape and the increasing adoption of large language models, a need has emerged to keep these models continuously updated with current events. While existing benchmarks evaluate general factual recall, they often overlook two critical aspects: the ability of models to integrate evolving knowledge through continual learning and the significant regional disparities in their performance. To address these gaps, we introduce the Timely Events Benchmark (TiEBe), a dataset containing over 11,000 question-answer pairs focused on globally and regionally significant events. TiEBe leverages structured retrospective data from Wikipedia, enabling continuous updates to assess LLMs' knowledge of evolving global affairs and their understanding of events across different regions. Our benchmark demonstrates that LLMs exhibit substantial geographic disparities in factual recall, emphasizing the need for more balanced global knowledge representation. Furthermore, TiEBe serves as a tool for evaluating continual learning strategies, providing insights into models' ability to acquire new information without forgetting past knowledge.
Abstract:This report presents Sabi\'a-3, our new flagship language model trained on a large brazilian-centric corpus. Evaluations across diverse professional and academic benchmarks show a strong performance on Portuguese and Brazil-related tasks. Sabi\'a-3 shows large improvements in comparison to our previous best of model, Sabi\'a-2 Medium, especially in reasoning-intensive tasks. Notably, Sabi\'a-3's average performance matches frontier LLMs, while it is offered at a three to four times lower cost per token, reinforcing the benefits of domain specialization.