Abstract:For realistic talking head generation, creating natural head motion while maintaining accurate lip synchronization is essential. To fulfill this challenging task, we propose DisCoHead, a novel method to disentangle and control head pose and facial expressions without supervision. DisCoHead uses a single geometric transformation as a bottleneck to isolate and extract head motion from a head-driving video. Either an affine or a thin-plate spline transformation can be used and both work well as geometric bottlenecks. We enhance the efficiency of DisCoHead by integrating a dense motion estimator and the encoder of a generator which are originally separate modules. Taking a step further, we also propose a neural mix approach where dense motion is estimated and applied implicitly by the encoder. After applying the disentangled head motion to a source identity, DisCoHead controls the mouth region according to speech audio, and it blinks eyes and moves eyebrows following a separate driving video of the eye region, via the weight modulation of convolutional neural networks. The experiments using multiple datasets show that DisCoHead successfully generates realistic audio-and-video-driven talking heads and outperforms state-of-the-art methods. Project page: https://deepbrainai-research.github.io/discohead/
Abstract:Several of the latest GAN-based vocoders show remarkable achievements, outperforming autoregressive and flow-based competitors in both qualitative and quantitative measures while synthesizing orders of magnitude faster. In this work, we hypothesize that the common factor underlying their success is the multi-resolution discriminating framework, not the minute details in architecture, loss function, or training strategy. We experimentally test the hypothesis by evaluating six different generators paired with one shared multi-resolution discriminating framework. For all evaluative measures with respect to text-to-speech syntheses and for all perceptual metrics, their performances are not distinguishable from one another, which supports our hypothesis.