Core Security Technologies
Abstract:This paper presents EarthView, a comprehensive dataset specifically designed for self-supervision on remote sensing data, intended to enhance deep learning applications on Earth monitoring tasks. The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic. Our dataset provides a wide spectrum of image data with varying resolutions, harnessed from different sensors and organized coherently into an accessible HuggingFace dataset in parquet format. This data spans five years, from 2017 to 2022. Accompanying the dataset, we introduce EarthMAE, a tailored Masked Autoencoder, developed to tackle the distinct challenges of remote sensing data. Trained in a self-supervised fashion, EarthMAE effectively processes different data modalities such as hyperspectral, multispectral, topographical data, segmentation maps, and temporal structure. This model helps us show that pre-training on Satellogic data improves performance on downstream tasks. While there is still a gap to fill in MAE for heterogeneous data, we regard this innovative combination of an expansive, diverse dataset and a versatile model adapted for self-supervised learning as a stride forward in deep learning for Earth monitoring.
Abstract:Assessing network security is a complex and difficult task. Attack graphs have been proposed as a tool to help network administrators understand the potential weaknesses of their network. However, a problem has not yet been addressed by previous work on this subject; namely, how to actually execute and validate the attack paths resulting from the analysis of the attack graph. In this paper we present a complete PDDL representation of an attack model, and an implementation that integrates a planner into a penetration testing tool. This allows to automatically generate attack paths for penetration testing scenarios, and to validate these attacks by executing the corresponding actions -including exploits- against the real target network. We present an algorithm for transforming the information present in the penetration testing tool to the planning domain, and show how the scalability issues of attack graphs can be solved using current planners. We include an analysis of the performance of our solution, showing how our model scales to medium-sized networks and the number of actions available in current penetration testing tools.
Abstract:As penetration testing frameworks have evolved and have become more complex, the problem of controlling automatically the pentesting tool has become an important question. This can be naturally addressed as an attack planning problem. Previous approaches to this problem were based on modeling the actions and assets in the PDDL language, and using off-the-shelf AI tools to generate attack plans. These approaches however are limited. In particular, the planning is classical (the actions are deterministic) and thus not able to handle the uncertainty involved in this form of attack planning. We herein contribute a planning model that does capture the uncertainty about the results of the actions, which is modeled as a probability of success of each action. We present efficient planning algorithms, specifically designed for this problem, that achieve industrial-scale runtime performance (able to solve scenarios with several hundred hosts and exploits). These algorithms take into account the probability of success of the actions and their expected cost (for example in terms of execution time, or network traffic generated). We thus show that probabilistic attack planning can be solved efficiently for the scenarios that arise when assessing the security of large networks. Two "primitives" are presented, which are used as building blocks in a framework separating the overall problem into two levels of abstraction. We also present the experimental results obtained with our implementation, and conclude with some ideas for further work.
Abstract:In this work we start walking the path to a new perspective for viewing cyberwarfare scenarios, by introducing conceptual tools (a formal model) to evaluate the costs of an attack, to describe the theater of operations, targets, missions, actions, plans and assets involved in cyberwarfare attacks. We also describe two applications of this model: autonomous planning leading to automated penetration tests, and attack simulations, allowing a system administrator to evaluate the vulnerabilities of his network.