Abstract:User interactions on e-commerce platforms are inherently diverse, involving behaviors such as clicking, favoriting, adding to cart, and purchasing. The transitions between these behaviors offer valuable insights into user-item interactions, serving as a key signal for un- derstanding evolving preferences. Consequently, there is growing interest in leveraging multi-behavior data to better capture user intent. Recent studies have explored sequential modeling of multi- behavior data, many relying on transformer-based architectures with polynomial time complexity. While effective, these approaches often incur high computational costs, limiting their applicability in large-scale industrial systems with long user sequences. To address this challenge, we propose the Transition-Aware Graph Attention Network (TGA), a linear-complexity approach for modeling multi-behavior transitions. Unlike traditional trans- formers that treat all behavior pairs equally, TGA constructs a structured sparse graph by identifying informative transitions from three perspectives: (a) item-level transitions, (b) category-level transitions, and (c) neighbor-level transitions. Built upon the structured graph, TGA employs a transition-aware graph Attention mechanism that jointly models user-item interactions and behav- ior transition types, enabling more accurate capture of sequential patterns while maintaining computational efficiency. Experiments show that TGA outperforms all state-of-the-art models while sig- nificantly reducing computational cost. Notably, TGA has been deployed in a large-scale industrial production environment, where it leads to impressive improvements in key business metrics.
Abstract:Industrial recommender systems face two fundamental limitations under the log-driven paradigm: (1) knowledge poverty in ID-based item representations that causes brittle interest modeling under data sparsity, and (2) systemic blindness to beyond-log user interests that constrains model performance within platform boundaries. These limitations stem from an over-reliance on shallow interaction statistics and close-looped feedback while neglecting the rich world knowledge about product semantics and cross-domain behavioral patterns that Large Language Models have learned from vast corpora. To address these challenges, we introduce ReaSeq, a reasoning-enhanced framework that leverages world knowledge in Large Language Models to address both limitations through explicit and implicit reasoning. Specifically, ReaSeq employs explicit Chain-of-Thought reasoning via multi-agent collaboration to distill structured product knowledge into semantically enriched item representations, and latent reasoning via Diffusion Large Language Models to infer plausible beyond-log behaviors. Deployed on Taobao's ranking system serving hundreds of millions of users, ReaSeq achieves substantial gains: >6.0% in IPV and CTR, >2.9% in Orders, and >2.5% in GMV, validating the effectiveness of world-knowledge-enhanced reasoning over purely log-driven approaches.
Abstract:Graph clustering is a fundamental task in graph analysis, and recent advances in utilizing graph neural networks (GNNs) have shown impressive results. Despite the success of existing GNN-based graph clustering methods, they often overlook the quality of graph structure, which is inherent in real-world graphs due to their sparse and multifarious nature, leading to subpar performance. Graph structure learning allows refining the input graph by adding missing links and removing spurious connections. However, previous endeavors in graph structure learning have predominantly centered around supervised settings, and cannot be directly applied to our specific clustering tasks due to the absence of ground-truth labels. To bridge the gap, we propose a novel method called \textbf{ho}mophily-enhanced structure \textbf{le}arning for graph clustering (HoLe). Our motivation stems from the observation that subtly enhancing the degree of homophily within the graph structure can significantly improve GNNs and clustering outcomes. To realize this objective, we develop two clustering-oriented structure learning modules, i.e., hierarchical correlation estimation and cluster-aware sparsification. The former module enables a more accurate estimation of pairwise node relationships by leveraging guidance from latent and clustering spaces, while the latter one generates a sparsified structure based on the similarity matrix and clustering assignments. Additionally, we devise a joint optimization approach alternating between training the homophily-enhanced structure learning and GNN-based clustering, thereby enforcing their reciprocal effects. Extensive experiments on seven benchmark datasets of various types and scales, across a range of clustering metrics, demonstrate the superiority of HoLe against state-of-the-art baselines.