Abstract:3D Gaussian Splatting has shown remarkable capabilities in novel view rendering tasks and exhibits significant potential for multi-view optimization.However, the original 3D Gaussian Splatting lacks color representation for inputs in low-light environments. Simply using enhanced images as inputs would lead to issues with multi-view consistency, and current single-view enhancement systems rely on pre-trained data, lacking scene generalization. These problems limit the application of 3D Gaussian Splatting in low-light conditions in the field of robotics, including high-fidelity modeling and feature matching. To address these challenges, we propose an unsupervised multi-view stereoscopic system based on Gaussian Splatting, called Low-Light Gaussian Splatting (LLGS). This system aims to enhance images in low-light environments while reconstructing the scene. Our method introduces a decomposable Gaussian representation called M-Color, which separately characterizes color information for targeted enhancement. Furthermore, we propose an unsupervised optimization method with zero-knowledge priors, using direction-based enhancement to ensure multi-view consistency. Experiments conducted on real-world datasets demonstrate that our system outperforms state-of-the-art methods in both low-light enhancement and 3D Gaussian Splatting.
Abstract:We introduce LTCF-Net, a novel network architecture designed for enhancing low-light images. Unlike Retinex-based methods, our approach utilizes two color spaces - LAB and YUV - to efficiently separate and process color information, by leveraging the separation of luminance from chromatic components in color images. In addition, our model incorporates the Transformer architecture to comprehensively understand image content while maintaining computational efficiency. To dynamically balance the brightness in output images, we also introduce a Fourier transform module that adjusts the luminance channel in the frequency domain. This mechanism could uniformly balance brightness across different regions while eliminating background noises, and thereby enhancing visual quality. By combining these innovative components, LTCF-Net effectively improves low-light image quality while keeping the model lightweight. Experimental results demonstrate that our method outperforms current state-of-the-art approaches across multiple evaluation metrics and datasets, achieving more natural color restoration and a balanced brightness distribution.