Abstract:The evaluation of fairness models in Machine Learning involves complex challenges, such as defining appropriate metrics, balancing trade-offs between utility and fairness, and there are still gaps in this stage. This work presents a novel multi-objective evaluation framework that enables the analysis of utility-fairness trade-offs in Machine Learning systems. The framework was developed using criteria from Multi-Objective Optimization that collect comprehensive information regarding this complex evaluation task. The assessment of multiple Machine Learning systems is summarized, both quantitatively and qualitatively, in a straightforward manner through a radar chart and a measurement table encompassing various aspects such as convergence, system capacity, and diversity. The framework's compact representation of performance facilitates the comparative analysis of different Machine Learning strategies for decision-makers, in real-world applications, with single or multiple fairness requirements. The framework is model-agnostic and flexible to be adapted to any kind of Machine Learning systems, that is, black- or white-box, any kind and quantity of evaluation metrics, including multidimensional fairness criteria. The functionality and effectiveness of the proposed framework is shown with different simulations, and an empirical study conducted on a real-world dataset with various Machine Learning systems.
Abstract:In this paper, a simple topology of Capsule Network (CapsNet) is investigated for the problem of image colorization. The generative and segmentation capabilities of the original CapsNet topology, which is proposed for image classification problem, is leveraged for the colorization of the images by modifying the network as follows:1) The original CapsNet model is adapted to map the grayscale input to the output in the CIE Lab colorspace, 2) The feature detector part of the model is updated by using deeper feature layers inherited from VGG-19 pre-trained model with weights in order to transfer low-level image representation capability to this model, 3) The margin loss function is modified as Mean Squared Error (MSE) loss to minimize the image-to-imagemapping. The resulting CapsNet model is named as Colorizer Capsule Network (ColorCapsNet).The performance of the ColorCapsNet is evaluated on the DIV2K dataset and promising results are obtained to investigate Capsule Networks further for image colorization problem.
Abstract:Age and gender are complementary soft biometric traits for face recognition. Successful estimation of age and gender from facial images taken under real-world conditions can contribute improving the identification results in the wild. In this study, in order to achieve robust age and gender classification in the wild, we have benefited from Deep Convolutional Neural Networks based representation. We have explored transferability of existing deep convolutional neural network (CNN) models for age and gender classification. The generic AlexNet-like architecture and domain specific VGG-Face CNN model are employed and fine-tuned with the Adience dataset prepared for age and gender classification in uncontrolled environments. In addition, task specific GilNet CNN model has also been utilized and used as a baseline method in order to compare with transferred models. Experimental results show that both transferred deep CNN models outperform the GilNet CNN model, which is the state-of-the-art age and gender classification approach on the Adience dataset, by an absolute increase of 7% and 4.5% in accuracy, respectively. This outcome indicates that transferring a deep CNN model can provide better classification performance than a task specific CNN model, which has a limited number of layers and trained from scratch using a limited amount of data as in the case of GilNet. Domain specific VGG-Face CNN model has been found to be more useful and provided better performance for both age and gender classification tasks, when compared with generic AlexNet-like model, which shows that transfering from a closer domain is more useful.