Abstract:The evaluation of fairness models in Machine Learning involves complex challenges, such as defining appropriate metrics, balancing trade-offs between utility and fairness, and there are still gaps in this stage. This work presents a novel multi-objective evaluation framework that enables the analysis of utility-fairness trade-offs in Machine Learning systems. The framework was developed using criteria from Multi-Objective Optimization that collect comprehensive information regarding this complex evaluation task. The assessment of multiple Machine Learning systems is summarized, both quantitatively and qualitatively, in a straightforward manner through a radar chart and a measurement table encompassing various aspects such as convergence, system capacity, and diversity. The framework's compact representation of performance facilitates the comparative analysis of different Machine Learning strategies for decision-makers, in real-world applications, with single or multiple fairness requirements. The framework is model-agnostic and flexible to be adapted to any kind of Machine Learning systems, that is, black- or white-box, any kind and quantity of evaluation metrics, including multidimensional fairness criteria. The functionality and effectiveness of the proposed framework is shown with different simulations, and an empirical study conducted on a real-world dataset with various Machine Learning systems.
Abstract:Foundation models have emerged as robust models with label efficiency in diverse domains. In medical imaging, these models contribute to the advancement of medical diagnoses due to the difficulty in obtaining labeled data. However, it is unclear whether using a large amount of unlabeled data, biased by the presence of sensitive attributes during pre-training, influences the fairness of the model. This research examines the bias in the Foundation model (RetFound) when it is applied to fine-tune the Brazilian Multilabel Ophthalmological Dataset (BRSET), which has a different population than the pre-training dataset. The model evaluation, in comparison with supervised learning, shows that the Foundation Model has the potential to reduce the gap between the maximum AUC and minimum AUC evaluations across gender and age groups. However, in a data-efficient generalization, the model increases the bias when the data amount decreases. These findings suggest that when deploying a Foundation Model in real-life scenarios with limited data, the possibility of fairness issues should be considered.