Abstract:RGB-Thermal fusion is a potential solution for various weather and light conditions in challenging scenarios. However, plenty of studies focus on designing complex modules to fuse different modalities. With the widespread application of large language models (LLMs), valuable information can be more effectively extracted from natural language. Therefore, we aim to leverage the advantages of large language models to design a structurally simple and highly adaptable multimodal fusion model architecture. We proposed MultimodAl Segmentation with TExt PRompts (MASTER) architecture, which integrates LLM into the fusion of RGB-Thermal multimodal data and allows complex query text to participate in the fusion process. Our model utilizes a dual-path structure to extract information from different modalities of images. Additionally, we employ LLM as the core module for multimodal fusion, enabling the model to generate learnable codebook tokens from RGB, thermal images, and textual information. A lightweight image decoder is used to obtain semantic segmentation results. The proposed MASTER performs exceptionally well in benchmark tests across various automated driving scenarios, yielding promising results.
Abstract:Infrared imaging technology has gained significant attention for its reliable sensing ability in low visibility conditions, prompting many studies to convert the abundant RGB images to infrared images. However, most existing image translation methods treat infrared images as a stylistic variation, neglecting the underlying physical laws, which limits their practical application. To address these issues, we propose a Physics-Informed Diffusion (PID) model for translating RGB images to infrared images that adhere to physical laws. Our method leverages the iterative optimization of the diffusion model and incorporates strong physical constraints based on prior knowledge of infrared laws during training. This approach enhances the similarity between translated infrared images and the real infrared domain without increasing extra training parameters. Experimental results demonstrate that PID significantly outperforms existing state-of-the-art methods. Our code is available at https://github.com/fangyuanmao/PID.