Abstract:Wearable sensor human activity recognition (HAR) is a crucial area of research in activity sensing. While transformer-based temporal deep learning models have been extensively studied and implemented, their large number of parameters present significant challenges in terms of system computing load and memory usage, rendering them unsuitable for real-time mobile activity recognition applications. Recently, an efficient hardware-aware state space model (SSM) called Mamba has emerged as a promising alternative. Mamba demonstrates strong potential in long sequence modeling, boasts a simpler network architecture, and offers an efficient hardware-aware design. Leveraging SSM for activity recognition represents an appealing avenue for exploration. In this study, we introduce HARMamba, which employs a more lightweight selective SSM as the foundational model architecture for activity recognition. The goal is to address the computational resource constraints encountered in real-time activity recognition scenarios. Our approach involves processing sensor data flow by independently learning each channel and segmenting the data into "patches". The marked sensor sequence's position embedding serves as the input token for the bidirectional state space model, ultimately leading to activity categorization through the classification head. Compared to established activity recognition frameworks like Transformer-based models, HARMamba achieves superior performance while also reducing computational and memory overhead. Furthermore, our proposed method has been extensively tested on four public activity datasets: PAMAP2, WISDM, UNIMIB, and UCI, demonstrating impressive performance in activity recognition tasks.
Abstract:Sensor-based human activity segmentation and recognition are two important and challenging problems in many real-world applications and they have drawn increasing attention from the deep learning community in recent years. Most of the existing deep learning works were designed based on pre-segmented sensor streams and they have treated activity segmentation and recognition as two separate tasks. In practice, performing data stream segmentation is very challenging. We believe that both activity segmentation and recognition may convey unique information which can complement each other to improve the performance of the two tasks. In this paper, we firstly proposes a new multitask deep neural network to solve the two tasks simultaneously. The proposed neural network adopts selective convolution and features multiscale windows to segment activities of long or short time durations. First, multiple windows of different scales are generated to center on each unit of the feature sequence. Then, the model is trained to predict, for each window, the activity class and the offset to the true activity boundaries. Finally, overlapping windows are filtered out by non-maximum suppression, and adjacent windows of the same activity are concatenated to complete the segmentation task. Extensive experiments were conducted on eight popular benchmarking datasets, and the results show that our proposed method outperforms the state-of-the-art methods both for activity recognition and segmentation.