Abstract:We propose a novel topological layer for general deep learning models based on persistent landscapes, in which we can efficiently exploit underlying topological features of the input data structure. We use the robust DTM function and show differentiability with respect to layer inputs, for a general persistent homology with arbitrary filtration. Thus, our proposed layer can be placed anywhere in the network architecture and feed critical information on the topological features of input data into subsequent layers to improve the learnability of the networks toward a given task. A task-optimal structure of the topological layer is learned during training via backpropagation, without requiring any input featurization or data preprocessing. We provide a tight stability theorem, and show that the proposed layer is robust towards noise and outliers. We demonstrate the effectiveness of our approach by classification experiments on various datasets.
Abstract:This paper presents an innovative and generic deep learning approach to monitor heart conditions from ECG signals.We focus our attention on both the detection and classification of abnormal heartbeats, known as arrhythmia. We strongly insist on generalization throughout the construction of a deep-learning model that turns out to be effective for new unseen patient. The novelty of our approach relies on the use of topological data analysis as basis of our multichannel architecture, to diminish the bias due to individual differences. We show that our structure reaches the performances of the state-of-the-art methods regarding arrhythmia detection and classification.