CORTEX
Abstract:How does the brain represent different modes of information? Can we design a system that automatically understands what the user is thinking? Such questions can be answered by studying brain recordings like functional magnetic resonance imaging (fMRI). As a first step, the neuroscience community has contributed several large cognitive neuroscience datasets related to passive reading/listening/viewing of concept words, narratives, pictures and movies. Encoding and decoding models using these datasets have also been proposed in the past two decades. These models serve as additional tools for basic research in cognitive science and neuroscience. Encoding models aim at generating fMRI brain representations given a stimulus automatically. They have several practical applications in evaluating and diagnosing neurological conditions and thus also help design therapies for brain damage. Decoding models solve the inverse problem of reconstructing the stimuli given the fMRI. They are useful for designing brain-machine or brain-computer interfaces. Inspired by the effectiveness of deep learning models for natural language processing, computer vision, and speech, recently several neural encoding and decoding models have been proposed. In this survey, we will first discuss popular representations of language, vision and speech stimuli, and present a summary of neuroscience datasets. Further, we will review popular deep learning based encoding and decoding architectures and note their benefits and limitations. Finally, we will conclude with a brief summary and discussion about future trends. Given the large amount of recently published work in the `computational cognitive neuroscience' community, we believe that this survey nicely organizes the plethora of work and presents it as a coherent story.
Abstract:Being able to analyze and interpret signal coming from electroencephalogram (EEG) recording can be of high interest for many applications including medical diagnosis and Brain-Computer Interfaces. Indeed, human experts are today able to extract from this signal many hints related to physiological as well as cognitive states of the recorded subject and it would be very interesting to perform such task automatically but today no completely automatic system exists. In previous studies, we have compared human expertise and automatic processing tools, including artificial neural networks (ANN), to better understand the competences of each and determine which are the difficult aspects to integrate in a fully automatic system. In this paper, we bring more elements to that study in reporting the main results of a practical experiment which was carried out in an hospital for sleep pathology study. An EEG recording was studied and labeled by a human expert and an ANN. We describe here the characteristics of the experiment, both human and neuronal procedure of analysis, compare their performances and point out the main limitations which arise from this study.