Abstract:We introduce Reality Fusion, a novel robot teleoperation system that localizes, streams, projects, and merges a typical onboard depth sensor with a photorealistic, high resolution, high framerate, and wide field of view (FoV) rendering of the complex remote environment represented as 3D Gaussian splats (3DGS). Our framework enables robust egocentric and exocentric robot teleoperation in immersive VR, with the 3DGS effectively extending spatial information of a depth sensor with limited FoV and balancing the trade-off between data streaming costs and data visual quality. We evaluated our framework through a user study with 24 participants, which revealed that Reality Fusion leads to significantly better user performance, situation awareness, and user preferences. To support further research and development, we provide an open-source implementation with an easy-to-replicate custom-made telepresence robot, a high-performance virtual reality 3DGS renderer, and an immersive robot control package. (Source code: https://github.com/uhhhci/RealityFusion)
Abstract:This paper introduces a novel data-driven motion in-betweening system to reach target poses of characters by making use of phases variables learned by a Periodic Autoencoder. Our approach utilizes a mixture-of-experts neural network model, in which the phases cluster movements in both space and time with different expert weights. Each generated set of weights then produces a sequence of poses in an autoregressive manner between the current and target state of the character. In addition, to satisfy poses which are manually modified by the animators or where certain end effectors serve as constraints to be reached by the animation, a learned bi-directional control scheme is implemented to satisfy such constraints. The results demonstrate that using phases for motion in-betweening tasks sharpen the interpolated movements, and furthermore stabilizes the learning process. Moreover, using phases for motion in-betweening tasks can also synthesize more challenging movements beyond locomotion behaviors. Additionally, style control is enabled between given target keyframes. Our proposed framework can compete with popular state-of-the-art methods for motion in-betweening in terms of motion quality and generalization, especially in the existence of long transition durations. Our framework contributes to faster prototyping workflows for creating animated character sequences, which is of enormous interest for the game and film industry.
Abstract:Natural interaction between multiple users within a shared virtual environment (VE) relies on each other's awareness of the current position of the interaction partners. This, however, cannot be warranted when users employ noncontinuous locomotion techniques, such as teleportation, which may cause confusion among bystanders. In this paper, we pursue two approaches to create a pleasant experience for both the moving user and the bystanders observing that movement. First, we will introduce a Smart Avatar system that delivers continuous full-body human representations for noncontinuous locomotion in shared virtual reality (VR) spaces. Smart Avatars imitate their assigned user's real-world movements when close-by and autonomously navigate to their user when the distance between them exceeds a certain threshold, i.e., after the user teleports. As part of the Smart Avatar system, we implemented four avatar transition techniques and compared them to conventional avatar locomotion in a user study, revealing significant positive effects on the observer's spatial awareness, as well as pragmatic and hedonic quality scores. Second, we introduce the concept of Stuttered Locomotion, which can be applied to any continuous locomotion method. By converting a continuous movement into short-interval teleport steps, we provide the merits of non-continuous locomotion for the moving user while observers can easily keep track of their path. Thus, while the experience for observers is similarly positive as with continuous motion, a user study confirmed that Stuttered Locomotion can significantly reduce the occurrence of cybersickness symptoms for the moving user, making it an attractive choice for shared VEs. We will discuss the potential of Smart Avatars and Stuttered Locomotion for shared VR experiences, both when applied individually and in combination.
Abstract:Neural radiance field (NeRF), in particular its extension by instant neural graphics primitives, is a novel rendering method for view synthesis that uses real-world images to build photo-realistic immersive virtual scenes. Despite its potential, research on the combination of NeRF and virtual reality (VR) remains sparse. Currently, there is no integration into typical VR systems available, and the performance and suitability of NeRF implementations for VR have not been evaluated, for instance, for different scene complexities or screen resolutions. In this paper, we present and evaluate a NeRF-based framework that is capable of rendering scenes in immersive VR allowing users to freely move their heads to explore complex real-world scenes. We evaluate our framework by benchmarking three different NeRF scenes concerning their rendering performance at different scene complexities and resolutions. Utilizing super-resolution, our approach can yield a frame rate of 30 frames per second with a resolution of 1280x720 pixels per eye. We discuss potential applications of our framework and provide an open source implementation online.
Abstract:We evaluate two methods of signalling abrupt direction changes of a robotic platform using a Mixed Reality avatar. The "Body" method uses gaze, gesture and torso direction to point to upcoming waypoints. The "Path" method visualises the change in direction using an angled path on the ground. We compare these two methods using a controlled user study and show that each method has its strengths depending on the situation. Overall the "Path" method was slightly more accurate in communicating the direction change of the robot but participants overall preferred the "Body" method.