Abstract:When given a single frame of the video, humans can not only interpret the content of the scene, but also they are able to forecast the near future. This ability is mostly driven by their rich prior knowledge about the visual world, both in terms of (i) the dynamics of moving agents, as well as (ii) the semantic of the scene. In this work we exploit the interplay between these two key elements to predict scene-specific motion patterns. First, we extract patch descriptors encoding the probability of moving to the adjacent patches, and the probability of being in that particular patch or changing behavior. Then, we introduce a Dynamic Bayesian Network which exploits this scene specific knowledge for trajectory prediction. Experimental results demonstrate that our method is able to accurately predict trajectories and transfer predictions to a novel scene characterized by similar elements.
Abstract:Matching cross-view images is challenging because the appearance and viewpoints are significantly different. While low-level features based on gradient orientations or filter responses can drastically vary with such changes in viewpoint, semantic information of images however shows an invariant characteristic in this respect. Consequently, semantically labeled regions can be used for performing cross-view matching. In this paper, we therefore explore this idea and propose an automatic method for detecting and representing the semantic information of an RGB image with the goal of performing cross-view matching with a (non-RGB) geographic information system (GIS). A segmented image forms the input to our system with segments assigned to semantic concepts such as traffic signs, lakes, roads, foliage, etc. We design a descriptor to robustly capture both, the presence of semantic concepts and the spatial layout of those segments. Pairwise distances between the descriptors extracted from the GIS map and the query image are then used to generate a shortlist of the most promising locations with similar semantic concepts in a consistent spatial layout. An experimental evaluation with challenging query images and a large urban area shows promising results.