Abstract:We present a novel learned image reconstruction method for accelerated cardiac MRI with multiple receiver coils based on deep convolutional neural networks (CNNs) and algorithm unrolling. In contrast to many existing learned MR image reconstruction techniques that necessitate coil-sensitivity map (CSM) estimation as a distinct network component, our proposed approach avoids explicit CSM estimation. Instead, it implicitly captures and learns to exploit the inter-coil relationships of the images. Our method consists of a series of novel learned image and k-space blocks with shared latent information and adaptation to the acquisition parameters by feature-wise modulation (FiLM), as well as coil-wise data-consistency (DC) blocks. Our method achieved PSNR values of 34.89 and 35.56 and SSIM values of 0.920 and 0.942 in the cine track and mapping track validation leaderboard of the MICCAI STACOM CMRxRecon Challenge, respectively, ranking 4th among different teams at the time of writing. Code will be made available at https://github.com/fzimmermann89/CMRxRecon
Abstract:We propose a method for fast and automatic estimation of spatially dependent regularization maps for total variation-based (TV) tomography reconstruction. The estimation is based on two distinct sub-networks, with the first sub-network estimating the regularization parameter-map from the input data while the second one unrolling T iterations of the Primal-Dual Three-Operator Splitting (PD3O) algorithm. The latter approximately solves the corresponding TV-minimization problem incorporating the previously estimated regularization parameter-map. The overall network is then trained end-to-end in a supervised learning fashion using pairs of clean-corrupted data but crucially without the need of having access to labels for the optimal regularization parameter-maps.