Abstract:Most approaches that tackle the problem of node classification consider nodes to be similar, if they have shared neighbors or are close to each other in the graph. Recent methods for attributed graphs additionally take attributes of neighboring nodes into account. We argue that the class labels of the neighbors bear important information and considering them helps to improve classification quality. Two nodes which are similar based on class labels in their neighborhood do not need to be close-by in the graph and may even belong to different connected components. In this work, we propose a novel approach for the semi-supervised node classification. Precisely, we propose a new node embedding which is based on the class labels in the local neighborhood of a node. We show that this is a different setting from attribute-based embeddings and thus, we propose a new method to learn label-based node embeddings which can mirror a variety of relations between the class labels of neighboring nodes. Our experimental evaluation demonstrates that our new methods can significantly improve the prediction quality on real world data sets.
Abstract:In this work we propose Lasagne, a methodology to learn locality and structure aware graph node embeddings in an unsupervised way. In particular, we show that the performance of existing random-walk based approaches depends strongly on the structural properties of the graph, e.g., the size of the graph, whether the graph has a flat or upward-sloping Network Community Profile (NCP), whether the graph is expander-like, whether the classes of interest are more k-core-like or more peripheral, etc. For larger graphs with flat NCPs that are strongly expander-like, existing methods lead to random walks that expand rapidly, touching many dissimilar nodes, thereby leading to lower-quality vector representations that are less useful for downstream tasks. Rather than relying on global random walks or neighbors within fixed hop distances, Lasagne exploits strongly local Approximate Personalized PageRank stationary distributions to more precisely engineer local information into node embeddings. This leads, in particular, to more meaningful and more useful vector representations of nodes in poorly-structured graphs. We show that Lasagne leads to significant improvement in downstream multi-label classification for larger graphs with flat NCPs, that it is comparable for smaller graphs with upward-sloping NCPs, and that is comparable to existing methods for link prediction tasks.