Abstract:Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.
Abstract:Open Information Extraction (OIE) is a structured prediction (SP) task in Natural Language Processing (NLP) that aims to extract structured $n$-ary tuples - usually subject-relation-object triples - from free text. The word embeddings in the input text can be enhanced with linguistic features, usually Part-of-Speech (PoS) and Syntactic Dependency Parse (SynDP) labels. However, past enhancement techniques cannot leverage the power of pretrained language models (PLMs), which themselves have been hardly used for OIE. To bridge this gap, we are the first to leverage linguistic features with a Seq2Seq PLM for OIE. We do so by introducing two methods - Weighted Addition and Linearized Concatenation. Our work can give any neural OIE architecture the key performance boost from both PLMs and linguistic features in one go. In our settings, this shows wide improvements of up to 24.9%, 27.3% and 14.9% on Precision, Recall and F1 scores respectively over the baseline. Beyond this, we address other important challenges in the field: to reduce compute overheads with the features, we are the first ones to exploit Semantic Dependency Parse (SemDP) tags; to address flaws in current datasets, we create a clean synthetic dataset; finally, we contribute the first known study of OIE behaviour in SP models.
Abstract:Realizing the recent advances in Natural Language Processing (NLP) to the legal sector poses challenging problems such as extremely long sequence lengths, specialized vocabulary that is usually only understood by legal professionals, and high amounts of data imbalance. The recent surge of Large Language Models (LLMs) has begun to provide new opportunities to apply NLP in the legal domain due to their ability to handle lengthy, complex sequences. Moreover, the emergence of domain-specific LLMs has displayed extremely promising results on various tasks. In this study, we aim to quantify how general LLMs perform in comparison to legal-domain models (be it an LLM or otherwise). Specifically, we compare the zero-shot performance of three general-purpose LLMs (ChatGPT-20b, LLaMA-2-70b, and Falcon-180b) on the LEDGAR subset of the LexGLUE benchmark for contract provision classification. Although the LLMs were not explicitly trained on legal data, we observe that they are still able to classify the theme correctly in most cases. However, we find that their mic-F1/mac-F1 performance is up to 19.2/26.8\% lesser than smaller models fine-tuned on the legal domain, thus underscoring the need for more powerful legal-domain LLMs.