Abstract:In this article, we propose Echo, a novel joint-matching teleoperation system designed to enhance the collection of datasets for manual and bimanual tasks. Our system is specifically tailored for controlling the UR manipulator and features a custom controller with force feedback and adjustable sensitivity modes, enabling precise and intuitive operation. Additionally, Echo integrates a user-friendly dataset recording interface, simplifying the process of collecting high-quality training data for imitation learning. The system is designed to be reliable, cost-effective, and easily reproducible, making it an accessible tool for researchers, laboratories, and startups passionate about advancing robotics through imitation learning. Although the current implementation focuses on the UR manipulator, Echo architecture is reconfigurable and can be adapted to other manipulators and humanoid systems. We demonstrate the effectiveness of Echo through a series of experiments, showcasing its ability to perform complex bimanual tasks and its potential to accelerate research in the field. We provide assembly instructions, a hardware description, and code at https://eterwait.github.io/Echo/.
Abstract:This paper is dedicated to the development of a novel adaptive torsion spring mechanism for optimizing energy consumption in legged robots. By adjusting the equilibrium position and stiffness of the spring, the system improves energy efficiency during cyclic movements, such as walking and jumping. The adaptive compliance mechanism, consisting of a torsion spring combined with a worm gear driven by a servo actuator, compensates for motion-induced torque and reduces motor load. Simulation results demonstrate a significant reduction in power consumption, highlighting the effectiveness of this approach in enhancing robotic locomotion.