Abstract:Computed tomography (CT) serves as an effective tool for lung cancer screening, diagnosis, treatment, and prognosis, providing a rich source of features to quantify temporal and spatial tumor changes. Nonetheless, the diversity of CT scanners and customized acquisition protocols can introduce significant inconsistencies in texture features, even when assessing the same patient. This variability poses a fundamental challenge for subsequent research that relies on consistent image features. Existing CT image standardization models predominantly utilize GAN-based supervised or semi-supervised learning, but their performance remains limited. We present DiffusionCT, an innovative score-based DDPM model that operates in the latent space to transform disparate non-standard distributions into a standardized form. The architecture comprises a U-Net-based encoder-decoder, augmented by a DDPM model integrated at the bottleneck position. First, the encoder-decoder is trained independently, without embedding DDPM, to capture the latent representation of the input data. Second, the latent DDPM model is trained while keeping the encoder-decoder parameters fixed. Finally, the decoder uses the transformed latent representation to generate a standardized CT image, providing a more consistent basis for downstream analysis. Empirical tests on patient CT images indicate notable improvements in image standardization using DiffusionCT. Additionally, the model significantly reduces image noise in SPAD images, further validating the effectiveness of DiffusionCT for advanced imaging tasks.
Abstract:The protection of pathways holds immense significance across various domains, including urban planning, transportation, surveillance, and security. This article introduces a groundbreaking approach to safeguarding pathways by employing orthogonal robots. The study specifically addresses the challenge of efficiently guarding orthogonal areas with the minimum number of orthogonal robots. The primary focus is on orthogonal pathways, characterized by a path-like dual graph of vertical decomposition. It is demonstrated that determining the minimum number of orthogonal robots for pathways can be achieved in linear time. However, it is essential to note that the general problem of finding the minimum number of robots for simple polygons with general visibility, even in the orthogonal case, is known to be NP-hard. Emphasis is placed on the flexibility of placing robots anywhere within the polygon, whether on the boundary or in the interior.