Abstract:The Orthogonal Watchman Route Problem (OWRP) entails the search for the shortest path, known as the watchman route, that a robot must follow within a polygonal environment. The primary objective is to ensure that every point in the environment remains visible from at least one point on the route, allowing the robot to survey the entire area in a single, continuous sweep. This research places particular emphasis on reducing the number of turns in the route, as it is crucial for optimizing navigation in watchman routes within the field of robotics. The cost associated with changing direction is of significant importance, especially for specific types of robots. This paper introduces an efficient linear-time algorithm for solving the OWRP under the assumption that the environment is monotone. The findings of this study contribute to the progress of robotic systems by enabling the design of more streamlined patrol robots. These robots are capable of efficiently navigating complex environments while minimizing the number of turns. This advancement enhances their coverage and surveillance capabilities, making them highly effective in various real-world applications.
Abstract:The protection of pathways holds immense significance across various domains, including urban planning, transportation, surveillance, and security. This article introduces a groundbreaking approach to safeguarding pathways by employing orthogonal robots. The study specifically addresses the challenge of efficiently guarding orthogonal areas with the minimum number of orthogonal robots. The primary focus is on orthogonal pathways, characterized by a path-like dual graph of vertical decomposition. It is demonstrated that determining the minimum number of orthogonal robots for pathways can be achieved in linear time. However, it is essential to note that the general problem of finding the minimum number of robots for simple polygons with general visibility, even in the orthogonal case, is known to be NP-hard. Emphasis is placed on the flexibility of placing robots anywhere within the polygon, whether on the boundary or in the interior.