Abstract:Recently, the Segment Anything Model (SAM) gains lots of attention rapidly due to its impressive segmentation performance on images. Regarding its strong ability on image segmentation and high interactivity with different prompts, we found that it performs poorly on consistent segmentation in videos. Therefore, in this report, we propose Track Anything Model (TAM), which achieves high-performance interactive tracking and segmentation in videos. To be detailed, given a video sequence, only with very little human participation, i.e., several clicks, people can track anything they are interested in, and get satisfactory results in one-pass inference. Without additional training, such an interactive design performs impressively on video object tracking and segmentation. All resources are available on {https://github.com/gaomingqi/Track-Anything}. We hope this work can facilitate related research.
Abstract:We propose GANCoder, an automatic programming approach based on Generative Adversarial Networks (GAN), which can generate the same functional and logical programming language codes conditioned on the given natural language utterances. The adversarial training between generator and discriminator helps generator learn distribution of dataset and improve code generation quality. Our experimental results show that GANCoder can achieve comparable accuracy with the state-of-the-art methods and is more stable when programming languages.