Abstract:Crafting a marketing message (copy), or copywriting is a challenging generation task, as the copy must adhere to various constraints. Copy creation is inherently iterative for humans, starting with an initial draft followed by successive refinements. However, manual copy creation is time-consuming and expensive, resulting in only a few copies for each use case. This limitation restricts our ability to personalize content to customers. Contrary to the manual approach, LLMs can generate copies quickly, but the generated content does not consistently meet all the constraints on the first attempt (similar to humans). While recent studies have shown promise in improving constrained generation through iterative refinement, they have primarily addressed tasks with only a few simple constraints. Consequently, the effectiveness of iterative refinement for tasks such as copy generation, which involves many intricate constraints, remains unclear. To address this gap, we propose an LLM-based end-to-end framework for scalable copy generation using iterative refinement. To the best of our knowledge, this is the first study to address multiple challenging constraints simultaneously in copy generation. Examples of these constraints include length, topics, keywords, preferred lexical ordering, and tone of voice. We demonstrate the performance of our framework by creating copies for e-commerce banners for three different use cases of varying complexity. Our results show that iterative refinement increases the copy success rate by $16.25-35.91$% across use cases. Furthermore, the copies generated using our approach outperformed manually created content in multiple pilot studies using a multi-armed bandit framework. The winning copy improved the click-through rate by $38.5-45.21$%.
Abstract:Producing higher-quality crops within shortened breeding cycles ensures global food availability and security, but this improvement intensifies logistical and productivity challenges for seed industries in the year-round breeding process due to the storage limitations. In the 2021 Syngenta crop challenge in analytics, Syngenta raised the problem to design an optimization model for the planting time scheduling in the 2020 year-round breeding process so that there is a consistent harvest quantity each week. They released a dataset that contained 2569 seed populations with their planting windows, required growing degree units for harvesting, and their harvest quantities at two sites. To address this challenge, we developed a new framework that consists of a weather time series model and an optimization model to schedule the planting time. A deep recurrent neural network was designed to predict the weather into the future, and a Gaussian process model on top of the time-series model was developed to model the uncertainty of forecasted weather. The proposed optimization models also scheduled the seed population's planting time at the fewest number of weeks with a more consistent weekly harvest quantity. Using the proposed optimization models can decrease the required capacity by 69% at site 0 and up to 51% at site 1 compared to the original planting time.