Abstract:While we increasingly rely on large language models (LLMs) for various tasks, these models are known to produce inaccurate content or 'hallucinations' with potentially disastrous consequences. The recent integration of web search results into LLMs prompts the question of whether people utilize them to verify the generated content, thereby avoiding falling victim to hallucinations. This study (N = 560) investigated how the provision of search results, either static (fixed search results) or dynamic (participant-driven searches), affect participants' perceived accuracy and confidence in evaluating LLM-generated content (i.e., genuine, minor hallucination, major hallucination), compared to the control condition (no search results). Findings indicate that participants in both static and dynamic conditions (vs. control) rated hallucinated content to be less accurate. However, those in the dynamic condition rated genuine content as more accurate and demonstrated greater overall confidence in their assessments than those in the static or control conditions. In addition, those higher in need for cognition (NFC) rated major hallucinations to be less accurate than low NFC participants, with no corresponding difference for genuine content or minor hallucinations. These results underscore the potential benefits of integrating web search results into LLMs for the detection of hallucinations, as well as the need for a more nuanced approach when developing human-centered systems, taking user characteristics into account.
Abstract:The widespread adoption and transformative effects of large language models (LLMs) have sparked concerns regarding their capacity to produce inaccurate and fictitious content, referred to as `hallucinations'. Given the potential risks associated with hallucinations, humans should be able to identify them. This research aims to understand the human perception of LLM hallucinations by systematically varying the degree of hallucination (genuine, minor hallucination, major hallucination) and examining its interaction with warning (i.e., a warning of potential inaccuracies: absent vs. present). Participants (N=419) from Prolific rated the perceived accuracy and engaged with content (e.g., like, dislike, share) in a Q/A format. Results indicate that humans rank content as truthful in the order genuine > minor hallucination > major hallucination and user engagement behaviors mirror this pattern. More importantly, we observed that warning improves hallucination detection without significantly affecting the perceived truthfulness of genuine content. We conclude by offering insights for future tools to aid human detection of hallucinations.
Abstract:The potential social harms that large language models pose, such as generating offensive content and reinforcing biases, are steeply rising. Existing works focus on coping with this concern while interacting with ill-intentioned users, such as those who explicitly make hate speech or elicit harmful responses. However, discussions on sensitive issues can become toxic even if the users are well-intentioned. For safer models in such scenarios, we present the Sensitive Questions and Acceptable Response (SQuARe) dataset, a large-scale Korean dataset of 49k sensitive questions with 42k acceptable and 46k non-acceptable responses. The dataset was constructed leveraging HyperCLOVA in a human-in-the-loop manner based on real news headlines. Experiments show that acceptable response generation significantly improves for HyperCLOVA and GPT-3, demonstrating the efficacy of this dataset.