Abstract:Cyber-attacks continue to grow, both in terms of volume and sophistication. This is aided by an increase in available computational power, expanding attack surfaces, and advancements in the human understanding of how to make attacks undetectable. Unsurprisingly, machine learning is utilised to defend against these attacks. In many applications, the choice of features is more important than the choice of model. A range of studies have, with varying degrees of success, attempted to discriminate between benign traffic and well-known cyber-attacks. The features used in these studies are broadly similar and have demonstrated their effectiveness in situations where cyber-attacks do not imitate benign behaviour. To overcome this barrier, in this manuscript, we introduce new features based on a higher level of abstraction of network traffic. Specifically, we perform flow aggregation by grouping flows with similarities. This additional level of feature abstraction benefits from cumulative information, thus qualifying the models to classify cyber-attacks that mimic benign traffic. The performance of the new features is evaluated using the benchmark CICIDS2017 dataset, and the results demonstrate their validity and effectiveness. This novel proposal will improve the detection accuracy of cyber-attacks and also build towards a new direction of feature extraction for complex ones.
Abstract:Network Control Systems (NAC) have been used in many industrial processes. They aim to reduce the human factor burden and efficiently handle the complex process and communication of those systems. Supervisory control and data acquisition (SCADA) systems are used in industrial, infrastructure and facility processes (e.g. manufacturing, fabrication, oil and water pipelines, building ventilation, etc.) Like other Internet of Things (IoT) implementations, SCADA systems are vulnerable to cyber-attacks, therefore, a robust anomaly detection is a major requirement. However, having an accurate anomaly detection system is not an easy task, due to the difficulty to differentiate between cyber-attacks and system internal failures (e.g. hardware failures). In this paper, we present a model that detects anomaly events in a water system controlled by SCADA. Six Machine Learning techniques have been used in building and evaluating the model. The model classifies different anomaly events including hardware failures (e.g. sensor failures), sabotage and cyber-attacks (e.g. DoS and Spoofing). Unlike other detection systems, our proposed work focuses on notifying the operator when an anomaly occurs with a probability of the event occurring. This additional information helps in accelerating the mitigation process. The model is trained and tested using a real-world dataset.
Abstract:With the world moving towards being increasingly dependent on computers and automation, one of the main challenges in the current decade has been to build secure applications, systems and networks. Alongside these challenges, the number of threats is rising exponentially due to the attack surface increasing through numerous interfaces offered for each service. To alleviate the impact of these threats, researchers have proposed numerous solutions; however, current tools often fail to adapt to ever-changing architectures, associated threats and 0-days. This manuscript aims to provide researchers with a taxonomy and survey of current dataset composition and current Intrusion Detection Systems (IDS) capabilities and assets. These taxonomies and surveys aim to improve both the efficiency of IDS and the creation of datasets to build the next generation IDS as well as to reflect networks threats more accurately in future datasets. To this end, this manuscript also provides a taxonomy and survey or network threats and associated tools. The manuscript highlights that current IDS only cover 25% of our threat taxonomy, while current datasets demonstrate clear lack of real-network threats and attack representation, but rather include a large number of deprecated threats, hence limiting the accuracy of current machine learning IDS. Moreover, the taxonomies are open-sourced to allow public contributions through a Github repository.