Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
Abstract:Large Language Models (LLMs) have exhibited remarkable capabilities in understanding and interacting with natural language across various sectors. However, their effectiveness is limited in specialized areas requiring high accuracy, such as plant science, due to a lack of specific expertise in these fields. This paper introduces PLLaMa, an open-source language model that evolved from LLaMa-2. It's enhanced with a comprehensive database, comprising more than 1.5 million scholarly articles in plant science. This development significantly enriches PLLaMa with extensive knowledge and proficiency in plant and agricultural sciences. Our initial tests, involving specific datasets related to plants and agriculture, show that PLLaMa substantially improves its understanding of plant science-related topics. Moreover, we have formed an international panel of professionals, including plant scientists, agricultural engineers, and plant breeders. This team plays a crucial role in verifying the accuracy of PLLaMa's responses to various academic inquiries, ensuring its effective and reliable application in the field. To support further research and development, we have made the model's checkpoints and source codes accessible to the scientific community. These resources are available for download at \url{https://github.com/Xianjun-Yang/PLLaMa}.
Abstract:Effective early detection of potato late blight (PLB) is an essential aspect of potato cultivation. However, it is a challenge to detect late blight at an early stage in fields with conventional imaging approaches because of the lack of visual cues displayed at the canopy level. Hyperspectral imaging can, capture spectral signals from a wide range of wavelengths also outside the visual wavelengths. In this context, we propose a deep learning classification architecture for hyperspectral images by combining 2D convolutional neural network (2D-CNN) and 3D-CNN with deep cooperative attention networks (PLB-2D-3D-A). First, 2D-CNN and 3D-CNN are used to extract rich spectral space features, and then the attention mechanism AttentionBlock and SE-ResNet are used to emphasize the salient features in the feature maps and increase the generalization ability of the model. The dataset is built with 15,360 images (64x64x204), cropped from 240 raw images captured in an experimental field with over 20 potato genotypes. The accuracy in the test dataset of 2000 images reached 0.739 in the full band and 0.790 in the specific bands (492nm, 519nm, 560nm, 592nm, 717nm and 765nm). This study shows an encouraging result for early detection of PLB with deep learning and proximal hyperspectral imaging.