Abstract:A major obstacle when attempting to train a machine learning system to evaluate facial clefts is the scarcity of large datasets of high-quality, ethics board-approved patient images. In response, we have built a deep learning-based cleft lip generator designed to produce an almost unlimited number of artificial images exhibiting high-fidelity facsimiles of cleft lip with wide variation. We undertook a transfer learning protocol testing different versions of StyleGAN-ADA (a generative adversarial network image generator incorporating adaptive data augmentation (ADA)) as the base model. Training images depicting a variety of cleft deformities were pre-processed to adjust for rotation, scaling, color adjustment and background blurring. The ADA modification of the primary algorithm permitted construction of our new generative model while requiring input of a relatively small number of training images. Adversarial training was carried out using 514 unique frontal photographs of cleft-affected faces to adapt a pre-trained model based on 70,000 normal faces. The Frechet Inception Distance (FID) was used to measure the similarity of the newly generated facial images to the cleft training dataset, while Perceptual Path Length (PPL) and the novel Divergence Index of Severity Histograms (DISH) measures were also used to assess the performance of the image generator that we dub CleftGAN. We found that StyleGAN3 with translation invariance (StyleGAN3-t) performed optimally as a base model. Generated images achieved a low FID reflecting a close similarity to our training input dataset of genuine cleft images. Low PPL and DISH measures reflected a smooth and semantically valid interpolation of images through the transfer learning process and a similar distribution of severity in the training and generated images, respectively.
Abstract:Data analysis and monitoring on smart grids are jeopardized by attacks on cyber-physical systems. False data injection attack (FDIA) is one of the classes of those attacks that target the smart measurement devices by injecting malicious data. The employment of machine learning techniques in the detection and localization of FDIA is proven to provide effective results. Training of such models requires centralized processing of sensitive user data that may not be plausible in a practical scenario. By employing federated learning for the detection of FDIA attacks, it is possible to train a model for the detection and localization of the attacks while preserving the privacy of sensitive user data. However, federated learning introduces new problems such as the personalization of the detectors in each node. In this paper, we propose a federated learning-based scheme combined with a hybrid deep neural network architecture that exploits the local correlations between the connected power buses by employing graph neural networks as well as the temporal patterns in the data by using LSTM layers. The proposed mechanism offers flexible and efficient training of an FDIA detector in a distributed setup while preserving the privacy of the clients. We validate the proposed architecture by extensive simulations on the IEEE 57, 118, and 300 bus systems and real electricity load data.
Abstract:This paper presents a novel machine learning framework to consistently detect, localize and rate congenital cleft lip anomalies in human faces. The goal is to provide a universal, objective measure of facial differences and reconstructive surgical outcomes that matches human judgments. The proposed method employs the StyleGAN2 generative adversarial network with model adaptation to produce normalized transformations of cleft-affected faces in order to allow for subsequent measurement of deformity using a pixel-wise subtraction approach. The complete pipeline of the proposed framework consists of the following steps: image preprocessing, face normalization, color transformation, morphological erosion, heat-map generation and abnormality scoring. Heatmaps that finely discern anatomic anomalies are proposed by exploiting the features of the considered framework. The proposed framework is validated through computer simulations and surveys containing human ratings. The anomaly scores yielded by the proposed computer model correlate closely with the human ratings of facial differences, leading to 0.942 Pearson's r score.
Abstract:Federated learning enables many applications benefiting distributed and private datasets of a large number of potential data-holding clients. However, different clients usually have their own particular objectives in terms of the tasks to be learned from the data. So, supporting federated learning with meta-learning tools such as multi-task learning and transfer learning will help enlarge the set of potential applications of federated learning by letting clients of different but related tasks share task-agnostic models that can be then further updated and tailored by each individual client for its particular task. In a federated multi-task learning problem, the trained deep neural network model should be fine-tuned for the respective objective of each client while sharing some parameters for more generalizability. We propose to train a deep neural network model with more generalized layers closer to the input and more personalized layers to the output. We achieve that by introducing layer types such as pre-trained, common, task-specific, and personal layers. We provide simulation results to highlight particular scenarios in which meta-learning-based federated learning proves to be useful.
Abstract:This study employs Infinite Impulse Response (IIR) Graph Neural Networks (GNN) to efficiently model the inherent graph network structure of the smart grid data to address the cyberattack localization problem. First, we numerically analyze the empirical frequency response of the Finite Impulse Response (FIR) and IIR graph filters (GFs) to approximate an ideal spectral response. We show that, for the same filter order, IIR GFs provide a better approximation to the desired spectral response and they also present the same level of approximation to a lower order GF due to their rational type filter response. Second, we propose an IIR GNN model to efficiently predict the presence of cyberattacks at the bus level. Finally, we evaluate the model under various cyberattacks at both sample-wise (SW) and bus-wise (BW) level, and compare the results with the existing architectures. It is experimentally verified that the proposed model outperforms the state-of-the-art FIR GNN model by 9.2% and 14% in terms of SW and BW localization, respectively.
Abstract:This paper proposes using communication pipelining to enhance the wireless spectrum utilization efficiency and convergence speed of federated learning in mobile edge computing applications. Due to limited wireless sub-channels, a subset of the total clients is scheduled in each iteration of federated learning algorithms. On the other hand, the scheduled clients wait for the slowest client to finish its computation. We propose to first cluster the clients based on the time they need per iteration to compute the local gradients of the federated learning model. Then, we schedule a mixture of clients from all clusters to send their local updates in a pipelined manner. In this way, instead of just waiting for the slower clients to finish their computation, more clients can participate in each iteration. While the time duration of a single iteration does not change, the proposed method can significantly reduce the number of required iterations to achieve a target accuracy. We provide a generic formulation for optimal client clustering under different settings, and we analytically derive an efficient algorithm for obtaining the optimal solution. We also provide numerical results to demonstrate the gains of the proposed method for different datasets and deep learning architectures.
Abstract:Cascading failure in power systems is triggered by a small perturbation that leads to a sequence of failures spread through the system. The interconnection between different components in a power system causes failures to easily propagate across the system. The situation gets worse by considering the interconnection between cyber and physical layers in power systems. A plethora of work has studied the cascading failure in power systems to calculate its impact on the system. Understanding how failures propagate into the system in time and space can help the system operator to take preventive actions and upgrade the system accordingly. Due to the nonlinearity of the power flow equation as well as the engineering constraints in the power system, it is essential to understand the spatio-temporal failure propagation in cyber-physical power systems (CPPS). This paper proposes an asynchronous algorithm for investigating failure propagation in CPPS. The physics of the power system is addressed by the full AC power flow equations. Various practical constraints including load shedding, load-generation balance, and island operation are considered to address practical constraints in power system operation. The propagation of various random initial attacks of different sizes is analyzed and visualized to elaborate on the applicability of the proposed approach. Our findings shed light on the cascading failure evolution in CPPS.
Abstract:As a highly complex and integrated cyber-physical system, modern power grids are exposed to cyberattacks. False data injection attacks (FDIAs), specifically, represent a major class of cyber threats to smart grids by targeting the measurement data's integrity. Although various solutions have been proposed to detect those cyberattacks, the vast majority of the works have ignored the inherent graph structure of the power grid measurements and validated their detectors only for small test systems with less than a few hundred buses. To better exploit the spatial correlations of smart grid measurements, this paper proposes a deep learning model for cyberattack detection in large-scale AC power grids using Chebyshev Graph Convolutional Networks (CGCN). By reducing the complexity of spectral graph filters and making them localized, CGCN provides a fast and efficient convolution operation to model the graph structural smart grid data. We numerically verify that the proposed CGCN based detector surpasses the state-of-the-art model by 7.86 in detection rate and 9.67 in false alarm rate for a large-scale power grid with 2848 buses. It is notable that the proposed approach detects cyberattacks under 4 milliseconds for a 2848-bus system, which makes it a good candidate for real-time detection of cyberattacks in large systems.
Abstract:False data injection attacks (FDIA) are becoming an active avenue of research as such attacks are more frequently encountered in power systems. Contrary to the detection of these attacks, less attention has been paid to identifying the attacked units of the grid. To this end, this work jointly studies detecting and localizing the stealth FDIA in modern power grids. Exploiting the inherent graph topology of power systems as well as the spatial correlations of smart meters' data, this paper proposes an approach based on the graph neural network (GNN) to identify the presence and location of the FDIA. The proposed approach leverages the auto-regressive moving average (ARMA) type graph convolutional filters which offer better noise robustness and frequency response flexibility compared to the polynomial type graph convolutional filters such as Chebyshev. To the best of our knowledge, this is the first work based on GNN that automatically detects and localizes FDIA in power systems. Extensive simulations and visualizations show that the proposed approach outperforms the available methods in both detection and localization FDIA for different IEEE test systems. Thus, the targeted areas in power grids can be identified and preventive actions can be taken before the attack impacts the grid.
Abstract:False data injection attacks (FDIAs) represent a major class of attacks that aim to break the integrity of measurements by injecting false data into the smart metering devices in power grid. To the best of authors' knowledge, no study has attempted to design a detector that automatically models the underlying graph topology and spatially correlated measurement data of the smart grids to better detect cyber attacks. The contributions of this paper to detect and mitigate FDIAs are twofold. First, we present a generic, localized, and stealth (unobservable) attack generation methodology and a publicly accessible dataset for researchers to develop and test their algorithms. Second, we propose a Graph Neural Network (GNN) based, scalable and real-time detector of FDIAs that efficiently combines model-driven and data-driven approaches by incorporating the inherent physical connections of modern AC power grids and exploiting the spatial correlations of the measurement data. It is experimentally verified by comparing the proposed GNN based detector with the currently available FDIA detectors in literature that our algorithm outperforms the best available solutions by 6.21\%, 0.69\%, and 2.73\% in detection rate and by 3.65\%, 0.34\% and 1.38\% in F1 score for standard IEEE testbeds with 14, 118, and 300 buses, respectively.