Abstract:Current neural network (NN) models can learn patterns from data points with historical dependence. Specifically, in natural language processing (NLP), sequential learning has transitioned from recurrence-based architectures to transformer-based architectures. However, it is unknown which NN architectures will perform the best on datasets containing deformation history due to mechanical loading. Thus, this study ascertains the appropriateness of 1D-convolutional, recurrent, and transformer-based architectures for predicting deformation localization based on the earlier states in the form of deformation history. Following this investigation, the crucial incompatibility issues between the mathematical computation of the prediction process in the best-performing NN architectures and the actual values derived from the natural physical properties of the deformation paths are examined in detail.
Abstract:Large Language Models (LLMs) are increasingly used in various contexts, yet remain prone to generating non-factual content, commonly referred to as "hallucinations". The literature categorizes hallucinations into several types, including entity-level, relation-level, and sentence-level hallucinations. However, existing hallucination datasets often fail to capture fine-grained hallucinations in multilingual settings. In this work, we introduce HalluVerse25, a multilingual LLM hallucination dataset that categorizes fine-grained hallucinations in English, Arabic, and Turkish. Our dataset construction pipeline uses an LLM to inject hallucinations into factual biographical sentences, followed by a rigorous human annotation process to ensure data quality. We evaluate several LLMs on HalluVerse25, providing valuable insights into how proprietary models perform in detecting LLM-generated hallucinations across different contexts.
Abstract:Large language models (LLMs) are increasingly deployed across diverse domains, yet they are prone to generating factually incorrect outputs - commonly known as "hallucinations." Among existing mitigation strategies, uncertainty-based methods are particularly attractive due to their ease of implementation, independence from external data, and compatibility with standard LLMs. In this work, we introduce a novel and scalable uncertainty-based semantic clustering framework for automated hallucination detection. Our approach leverages sentence embeddings and hierarchical clustering alongside a newly proposed inconsistency measure, SINdex, to yield more homogeneous clusters and more accurate detection of hallucination phenomena across various LLMs. Evaluations on prominent open- and closed-book QA datasets demonstrate that our method achieves AUROC improvements of up to 9.3% over state-of-the-art techniques. Extensive ablation studies further validate the effectiveness of each component in our framework.
Abstract:Despite the state-of-the-art performance of Large Language Models (LLMs), these models often suffer from hallucinations, which can undermine their performance in critical applications. In this work, we propose SAFE, a novel method for detecting and mitigating hallucinations by leveraging Sparse Autoencoders (SAEs). While hallucination detection techniques and SAEs have been explored independently, their synergistic application in a comprehensive system, particularly for hallucination-aware query enrichment, has not been fully investigated. To validate the effectiveness of SAFE, we evaluate it on two models with available SAEs across three diverse cross-domain datasets designed to assess hallucination problems. Empirical results demonstrate that SAFE consistently improves query generation accuracy and mitigates hallucinations across all datasets, achieving accuracy improvements of up to 29.45%.