Abstract:Diffusion models for garment-centric human generation from text or image prompts have garnered emerging attention for their great application potential. However, existing methods often face a dilemma: lightweight approaches, such as adapters, are prone to generate inconsistent textures; while finetune-based methods involve high training costs and struggle to maintain the generalization capabilities of pretrained diffusion models, limiting their performance across diverse scenarios. To address these challenges, we propose DreamFit, which incorporates a lightweight Anything-Dressing Encoder specifically tailored for the garment-centric human generation. DreamFit has three key advantages: (1) \textbf{Lightweight training}: with the proposed adaptive attention and LoRA modules, DreamFit significantly minimizes the model complexity to 83.4M trainable parameters. (2)\textbf{Anything-Dressing}: Our model generalizes surprisingly well to a wide range of (non-)garments, creative styles, and prompt instructions, consistently delivering high-quality results across diverse scenarios. (3) \textbf{Plug-and-play}: DreamFit is engineered for smooth integration with any community control plugins for diffusion models, ensuring easy compatibility and minimizing adoption barriers. To further enhance generation quality, DreamFit leverages pretrained large multi-modal models (LMMs) to enrich the prompt with fine-grained garment descriptions, thereby reducing the prompt gap between training and inference. We conduct comprehensive experiments on both $768 \times 512$ high-resolution benchmarks and in-the-wild images. DreamFit surpasses all existing methods, highlighting its state-of-the-art capabilities of garment-centric human generation.
Abstract:This paper introduces MMTryon, a multi-modal multi-reference VIrtual Try-ON (VITON) framework, which can generate high-quality compositional try-on results by taking as inputs a text instruction and multiple garment images. Our MMTryon mainly addresses two problems overlooked in prior literature: 1) Support of multiple try-on items and dressing styleExisting methods are commonly designed for single-item try-on tasks (e.g., upper/lower garments, dresses) and fall short on customizing dressing styles (e.g., zipped/unzipped, tuck-in/tuck-out, etc.) 2) Segmentation Dependency. They further heavily rely on category-specific segmentation models to identify the replacement regions, with segmentation errors directly leading to significant artifacts in the try-on results. For the first issue, our MMTryon introduces a novel multi-modality and multi-reference attention mechanism to combine the garment information from reference images and dressing-style information from text instructions. Besides, to remove the segmentation dependency, MMTryon uses a parsing-free garment encoder and leverages a novel scalable data generation pipeline to convert existing VITON datasets to a form that allows MMTryon to be trained without requiring any explicit segmentation. Extensive experiments on high-resolution benchmarks and in-the-wild test sets demonstrate MMTryon's superiority over existing SOTA methods both qualitatively and quantitatively. Besides, MMTryon's impressive performance on multi-items and style-controllable virtual try-on scenarios and its ability to try on any outfit in a large variety of scenarios from any source image, opens up a new avenue for future investigation in the fashion community.