Abstract:Magnetic soft continuum robots (MSCRs) have emerged as powerful devices in endovascular interventions owing to their hyperelastic fibre matrix and enhanced magnetic manipulability. Effective closed-loop control of tethered magnetic devices contributes to the achievement of autonomous vascular robotic surgery. In this article, we employ a magnetic actuation system equipped with a single rotatable permanent magnet to achieve closed-loop deflection control of the MSCR. To this end, we establish a differential kinematic model of MSCRs exposed to non-uniform magnetic fields. The relationship between the existence and uniqueness of Jacobian and the geometric position between robots is deduced. The accurate control direction induced by Jacobian is demonstrated to be crucial in simulations. Then, the corresponding quasi-static control (QSC) framework integrates a linear extended state observer to estimate model uncertainties. Finally, the effectiveness of the proposed QSC framework is validated through comparative trajectory tracking experiments with the PD controller under external disturbances. The proposed control framework effectively prevents the actuator from reaching the joint limit and achieves fast and low error-tracking performance without overshooting.
Abstract:Structural magnetic resonance imaging (sMRI) has shown great clinical value and has been widely used in deep learning (DL) based computer-aided brain disease diagnosis. Previous approaches focused on local shapes and textures in sMRI that may be significant only within a particular domain. The learned representations are likely to contain spurious information and have a poor generalization ability in other diseases and datasets. To facilitate capturing meaningful and robust features, it is necessary to first comprehensively understand the intrinsic pattern of the brain that is not restricted within a single data/task domain. Considering that the brain is a complex connectome of interlinked neurons, the connectional properties in the brain have strong biological significance, which is shared across multiple domains and covers most pathological information. In this work, we propose a connectional style contextual representation learning model (CS-CRL) to capture the intrinsic pattern of the brain, used for multiple brain disease diagnosis. Specifically, it has a vision transformer (ViT) encoder and leverages mask reconstruction as the proxy task and Gram matrices to guide the representation of connectional information. It facilitates the capture of global context and the aggregation of features with biological plausibility. The results indicate that CS-CRL achieves superior accuracy in multiple brain disease diagnosis tasks across six datasets and three diseases and outperforms state-of-the-art models. Furthermore, we demonstrate that CS-CRL captures more brain-network-like properties, better aggregates features, is easier to optimize and is more robust to noise, which explains its superiority in theory. Our source code will be released soon.