Abstract:Structural magnetic resonance imaging (sMRI) provides accurate estimates of the brain's structural organization and learning invariant brain representations from sMRI is an enduring issue in neuroscience. Previous deep representation learning models ignore the fact that the brain, as the core of human cognitive activity, is distinct from other organs whose primary attribute is anatomy. Therefore, capturing the semantic structure that dominates interindividual cognitive variability is key to accurately representing the brain. Given that this high-level semantic information is subtle, distributed, and interdependently latent in the brain structure, sMRI-based models need to capture fine-grained details and understand how they relate to the overall global structure. However, existing models are optimized by simple objectives, making features collapse into homogeneity and worsening simultaneous representation of fine-grained information and holistic semantics, causing a lack of biological plausibility and interpretation of cognition. Here, we propose MCIAT, a unified framework that combines Multi-task Collaborative pre-training and Individual-Adaptive-Tokens fine-tuning. Specifically, we first synthesize restorative learning, age prediction auxiliary learning and adversarial learning as a joint proxy task for deep semantic representation learning. Then, a mutual-attention-based token selection method is proposed to highlight discriminative features. The proposed MCIAT achieves state-of-the-art diagnosis performance on the ADHD-200 dataset compared with several sMRI-based approaches and shows superior generalization on the MCIC and OASIS datasets. Moreover, we studied 12 behavioral tasks and found significant associations between cognitive functions and MCIAT-established representations, which verifies the interpretability of our proposed framework.
Abstract:Structural magnetic resonance imaging (sMRI) has shown great clinical value and has been widely used in deep learning (DL) based computer-aided brain disease diagnosis. Previous approaches focused on local shapes and textures in sMRI that may be significant only within a particular domain. The learned representations are likely to contain spurious information and have a poor generalization ability in other diseases and datasets. To facilitate capturing meaningful and robust features, it is necessary to first comprehensively understand the intrinsic pattern of the brain that is not restricted within a single data/task domain. Considering that the brain is a complex connectome of interlinked neurons, the connectional properties in the brain have strong biological significance, which is shared across multiple domains and covers most pathological information. In this work, we propose a connectional style contextual representation learning model (CS-CRL) to capture the intrinsic pattern of the brain, used for multiple brain disease diagnosis. Specifically, it has a vision transformer (ViT) encoder and leverages mask reconstruction as the proxy task and Gram matrices to guide the representation of connectional information. It facilitates the capture of global context and the aggregation of features with biological plausibility. The results indicate that CS-CRL achieves superior accuracy in multiple brain disease diagnosis tasks across six datasets and three diseases and outperforms state-of-the-art models. Furthermore, we demonstrate that CS-CRL captures more brain-network-like properties, better aggregates features, is easier to optimize and is more robust to noise, which explains its superiority in theory. Our source code will be released soon.
Abstract:As the second most common neurodegenerative disease, Parkinson's disease has caused serious problems worldwide. However, the cause and mechanism of PD are not clear, and no systematic early diagnosis and treatment of PD have been established. Many patients with PD have not been diagnosed or misdiagnosed. In this paper, we proposed an EEG-based approach to diagnosing Parkinson's disease. It mapped the frequency band energy of electroencephalogram(EEG) signals to 2-dimensional images using the interpolation method and identified classification using capsule network(CapsNet) and achieved 89.34% classification accuracy for short-term EEG sections. A comparison of separate classification accuracy across different EEG bands revealed the highest accuracy in the gamma bands, suggesting that we need to pay more attention to the changes in gamma band changes in the early stages of PD.