Abstract:In this paper, we propose a novel multi-level aggregation network to regress the coordinates of the vertices of a 3D face from a single 2D image in an end-to-end manner. This is achieved by seamlessly combining standard convolutional neural networks (CNNs) with Graph Convolution Networks (GCNs). By iteratively and hierarchically fusing the features across different layers and stages of the CNNs and GCNs, our approach can provide a dense face alignment and 3D face reconstruction simultaneously for the benefit of direct feature learning of 3D face mesh. Experiments on several challenging datasets demonstrate that our method outperforms state-of-the-art approaches on both 2D and 3D face alignment tasks.
Abstract:Segmentation is an essential operation of image processing. The convolution operation suffers from a limited receptive field, while global modelling is fundamental to segmentation tasks. In this paper, we apply graph convolution into the segmentation task and propose an improved \textit{Laplacian}. Different from existing methods, our \textit{Laplacian} is data-dependent, and we introduce two attention diagonal matrices to learn a better vertex relationship. In addition, it takes advantage of both region and boundary information when performing graph-based information propagation. Specifically, we model and reason about the boundary-aware region-wise correlations of different classes through learning graph representations, which is capable of manipulating long range semantic reasoning across various regions with the spatial enhancement along the object's boundary. Our model is well-suited to obtain global semantic region information while also accommodates local spatial boundary characteristics simultaneously. Experiments on two types of challenging datasets demonstrate that our method outperforms the state-of-the-art approaches on the segmentation of polyps in colonoscopy images and of the optic disc and optic cup in colour fundus images.