Abstract:Four-dimensional (4D) Radar is a useful sensor for 3D object detection and the relative radial speed estimation of surrounding objects under various weather conditions. However, since Radar measurements are corrupted with invalid components such as noise, interference, and clutter, it is necessary to employ a preprocessing algorithm before the 3D object detection with neural networks. In this paper, we propose RTNH+ that is an enhanced version of RTNH, a 4D Radar object detection network, by two novel algorithms. The first algorithm is the combined constant false alarm rate (CFAR)-based two-level preprocessing (CCTP) algorithm that generates two filtered measurements of different characteristics using the same 4D Radar measurements, which can enrich the information of the input to the 4D Radar object detection network. The second is the vertical encoding (VE) algorithm that effectively encodes vertical features of the road objects from the CCTP outputs. We provide details of the RTNH+, and demonstrate that RTNH+ achieves significant performance improvement of 10.14\% in ${{AP}_{3D}^{IoU=0.3}}$ and 16.12\% in ${{AP}_{3D}^{IoU=0.5}}$ over RTNH.
Abstract:Recent works have shown the superior robustness of four-dimensional (4D) Radar-based three-dimensional (3D) object detection in adverse weather conditions. However, processing 4D Radar data remains a challenge due to the large data size, which require substantial amount of memory for computing and storage. In previous work, an online density reduction is performed on the 4D Radar Tensor (4DRT) to reduce the data size, in which the density reduction level is chosen arbitrarily. However, the impact of density reduction on the detection performance and memory consumption remains largely unknown. In this paper, we aim to address this issue by conducting extensive hyperparamter tuning on the density reduction level. Experimental results show that increasing the density level from 0.01% to 50% of the original 4DRT density level proportionally improves the detection performance, at a cost of memory consumption. However, when the density level is increased beyond 5%, only the memory consumption increases, while the detection performance oscillates below the peak point. In addition to the optimized density hyperparameter, we also introduce 4D Sparse Radar Tensor (4DSRT), a new representation for 4D Radar data with offline density reduction, leading to a significantly reduced raw data size. An optimized development kit for training the neural networks is also provided, which along with the utilization of 4DSRT, improves training speed by a factor of 17.1 compared to the state-of-the-art 4DRT-based neural networks. All codes are available at: https://github.com/kaist-avelab/K-Radar.
Abstract:Lane detection is one of the most important functions for autonomous driving. In recent years, deep learning-based lane detection networks with RGB camera images have shown promising performance. However, camera-based methods are inherently vulnerable to adverse lighting conditions such as poor or dazzling lighting. Unlike camera, LiDAR sensor is robust to the lighting conditions. In this work, we propose a novel two-stage LiDAR lane detection network with row-wise detection approach. The first-stage network produces lane proposals through a global feature correlator backbone and a row-wise detection head. Meanwhile, the second-stage network refines the feature map of the first-stage network via attention-based mechanism between the local features around the lane proposals, and outputs a set of new lane proposals. Experimental results on the K-Lane dataset show that the proposed network advances the state-of-the-art in terms of F1-score with 30% less GFLOPs. In addition, the second-stage network is found to be especially robust to lane occlusions, thus, demonstrating the robustness of the proposed network for driving in crowded environments.
Abstract:Unlike RGB cameras that use visible light bands (384$\sim$769 THz) and Lidar that use infrared bands (361$\sim$331 THz), Radars use relatively longer wavelength radio bands (77$\sim$81 GHz), resulting in robust measurements in adverse weathers. Unfortunately, existing Radar datasets only contain a relatively small number of samples compared to the existing camera and Lidar datasets. This may hinder the development of sophisticated data-driven deep learning techniques for Radar-based perception. Moreover, most of the existing Radar datasets only provide 3D Radar tensor (3DRT) data that contain power measurements along the Doppler, range, and azimuth dimensions. As there is no elevation information, it is challenging to estimate the 3D bounding box of an object from 3DRT. In this work, we introduce KAIST-Radar (K-Radar), a novel large-scale object detection dataset and benchmark that contains 35K frames of 4D Radar tensor (4DRT) data with power measurements along the Doppler, range, azimuth, and elevation dimensions, together with carefully annotated 3D bounding box labels of objects on the roads. K-Radar includes challenging driving conditions such as adverse weathers (fog, rain, and snow) on various road structures (urban, suburban roads, alleyways, and highways). In addition to the 4DRT, we provide auxiliary measurements from carefully calibrated high-resolution Lidars, surround stereo cameras, and RTK-GPS. We also provide 4DRT-based object detection baseline neural networks (baseline NNs) and show that the height information is crucial for 3D object detection. And by comparing the baseline NN with a similarly-structured Lidar-based neural network, we demonstrate that 4D Radar is a more robust sensor for adverse weather conditions. All codes are available at https://github.com/kaist-avelab/k-radar.
Abstract:Existing point cloud feature learning networks often incorporate sequences of sampling, neighborhood grouping, neighborhood-wise feature learning, and feature aggregation to learn high-semantic point features that represent the global context of a point cloud. Unfortunately, the compounded loss of information concerning granularity and non-maximum point features due to sampling and max pooling could adversely affect the high-semantic point features from existing networks such that they are insufficient to represent the local context of a point cloud, which in turn may hinder the network in distinguishing fine shapes. To cope with this problem, we propose a novel point cloud feature learning network, PointStack, using multi-resolution feature learning and learnable pooling (LP). The multi-resolution feature learning is realized by aggregating point features of various resolutions in the multiple layers, so that the final point features contain both high-semantic and high-resolution information. On the other hand, the LP is used as a generalized pooling function that calculates the weighted sum of multi-resolution point features through the attention mechanism with learnable queries, in order to extract all possible information from all available point features. Consequently, PointStack is capable of extracting high-semantic point features with minimal loss of information concerning granularity and non-maximum point features. Therefore, the final aggregated point features can effectively represent both global and local contexts of a point cloud. In addition, both the global structure and the local shape details of a point cloud can be well comprehended by the network head, which enables PointStack to advance the state-of-the-art of feature learning on point clouds. The codes are available at https://github.com/kaist-avelab/PointStack.