Full-stack autonomous driving system spans diverse technological domains-including perception, planning, and control-that each require in-depth research. Moreover, validating such technologies of the system necessitates extensive supporting infrastructure, from simulators and sensors to high-definition maps. These complexities with barrier to entry pose substantial limitations for individual developers and research groups. Recently, open-source autonomous driving software platforms have emerged to address this challenge by providing autonomous driving technologies and practical supporting infrastructure for implementing and evaluating autonomous driving functionalities. Among the prominent open-source platforms, Autoware and Apollo are frequently adopted in both academia and industry. While previous studies have assessed each platform independently, few have offered a quantitative and detailed head-to-head comparison of their capabilities. In this paper, we systematically examine the core modules of Autoware and Apollo and evaluate their middleware performance to highlight key differences. These insights serve as a practical reference for researchers and engineers, guiding them in selecting the most suitable platform for their specific development environments and advancing the field of full-stack autonomous driving system.