Abstract:This study presents a model of automatic speech recognition (ASR) designed to diagnose pronunciation issues in children with speech sound disorders (SSDs) to replace manual transcriptions in clinical procedures. Since ASR models trained for general purposes primarily predict input speech into real words, employing a well-known high-performance ASR model for evaluating pronunciation in children with SSDs is impractical. We fine-tuned the wav2vec 2.0 XLS-R model to recognize speech as pronounced rather than as existing words. The model was fine-tuned with a speech dataset from 137 children with inadequate speech production pronouncing 73 Korean words selected for actual clinical diagnosis. The model's predictions of the pronunciations of the words matched the human annotations with about 90% accuracy. While the model still requires improvement in recognizing unclear pronunciation, this study demonstrates that ASR models can streamline complex pronunciation error diagnostic procedures in clinical fields.
Abstract:Designing or learning an autonomous driving policy is undoubtedly a challenging task as the policy has to maintain its safety in all corner cases. In order to secure safety in autonomous driving, the ability to detect hazardous situations, which can be seen as an out-of-distribution (OOD) detection problem, becomes crucial. However, most conventional datasets only provide expert driving demonstrations, although some non-expert or uncommon driving behavior data are needed to implement a safety guaranteed autonomous driving platform. To this end, we present a novel dataset called the R3 Driving Dataset, composed of driving data with different qualities. The dataset categorizes abnormal driving behaviors into eight categories and 369 different detailed situations. The situations include dangerous lane changes and near-collision situations. To further enlighten how these abnormal driving behaviors can be detected, we utilize different uncertainty estimation and anomaly detection methods to the proposed dataset. From the results of the proposed experiment, it can be inferred that by using both uncertainty estimation and anomaly detection, most of the abnormal cases in the proposed dataset can be discriminated. The dataset of this paper can be downloaded from https://rllab-snu.github.io/projects/R3-Driving-Dataset/doc.html.