Abstract:We prove that, for the fundamental regression task of learning a single neuron, training a one-hidden layer ReLU network of any width by gradient flow from a small initialisation converges to zero loss and is implicitly biased to minimise the rank of network parameters. By assuming that the training points are correlated with the teacher neuron, we complement previous work that considered orthogonal datasets. Our results are based on a detailed non-asymptotic analysis of the dynamics of each hidden neuron throughout the training. We also show and characterise a surprising distinction in this setting between interpolator networks of minimal rank and those of minimal Euclidean norm. Finally we perform a range of numerical experiments, which corroborate our theoretical findings.
Abstract:Nonnegative matrix factorization (NMF) is the problem of decomposing a given nonnegative $n \times m$ matrix $M$ into a product of a nonnegative $n \times d$ matrix $W$ and a nonnegative $d \times m$ matrix $H$. A longstanding open question, posed by Cohen and Rothblum in 1993, is whether a rational matrix $M$ always has an NMF of minimal inner dimension $d$ whose factors $W$ and $H$ are also rational. We answer this question negatively, by exhibiting a matrix for which $W$ and $H$ require irrational entries.
Abstract:Nonnegative matrix factorization (NMF) is the problem of decomposing a given nonnegative $n \times m$ matrix $M$ into a product of a nonnegative $n \times d$ matrix $W$ and a nonnegative $d \times m$ matrix $H$. Restricted NMF requires in addition that the column spaces of $M$ and $W$ coincide. Finding the minimal inner dimension $d$ is known to be NP-hard, both for NMF and restricted NMF. We show that restricted NMF is closely related to a question about the nature of minimal probabilistic automata, posed by Paz in his seminal 1971 textbook. We use this connection to answer Paz's question negatively, thus falsifying a positive answer claimed in 1974. Furthermore, we investigate whether a rational matrix $M$ always has a restricted NMF of minimal inner dimension whose factors $W$ and $H$ are also rational. We show that this holds for matrices $M$ of rank at most $3$ and we exhibit a rank-$4$ matrix for which $W$ and $H$ require irrational entries.
Abstract:#SMT, or model counting for logical theories, is a well-known hard problem that generalizes such tasks as counting the number of satisfying assignments to a Boolean formula and computing the volume of a polytope. In the realm of satisfiability modulo theories (SMT) there is a growing need for model counting solvers, coming from several application domains (quantitative information flow, static analysis of probabilistic programs). In this paper, we show a reduction from an approximate version of #SMT to SMT. We focus on the theories of integer arithmetic and linear real arithmetic. We propose model counting algorithms that provide approximate solutions with formal bounds on the approximation error. They run in polynomial time and make a polynomial number of queries to the SMT solver for the underlying theory, exploiting "for free" the sophisticated heuristics implemented within modern SMT solvers. We have implemented the algorithms and used them to solve the value problem for a model of loop-free probabilistic programs with nondeterminism.