Abstract:This paper presents detailed radio propagation measurements for an indoor factory (InF) environment at 6.75 GHz and 16.95 GHz using a 1 GHz bandwidth channel sounder. Conducted at the NYU MakerSpace in the NYU Tandon School of Engineering campus in Brooklyn, NY, USA, our measurement campaign characterizes a representative small factory with diverse machinery and open workspaces across 12 locations, comprising 5 line-of-sight (LOS) and 7 non-line-of-sight (NLOS) scenarios. Analysis using the close-in (CI) path loss model with a 1 m reference distance reveals path loss exponents (PLE) below 2 in LOS at 6.75 GHz and 16.95 GHz, while in NLOS PLE is similar to free-space propagation. The RMS delay spread (DS) decreases at higher frequencies with a clear frequency dependence. Similarly, RMS angular spread (AS) measurements show wider spreads in NLOS compared to LOS at both frequency bands, with a decreasing trend as frequency increases. These observations in a dense-scatterer environment demonstrate frequency-dependent behavior that deviate from existing industry-standard models. Our findings provide crucial insights into complex propagation mechanisms in factory environments, essential for designing robust industrial wireless networks at upper mid-band frequencies.
Abstract:Global allocations in the upper mid-band spectrum (4-24 GHz) necessitate a comprehensive exploration of the propagation behavior to meet the promise of coverage and capacity. This paper presents an extensive Urban Microcell (UMi) outdoor propagation measurement campaign at 6.75 GHz and 16.95 GHz conducted in Downtown Brooklyn, USA, using a 1 GHz bandwidth sliding correlation channel sounder over 40-880 m propagation distance, encompassing 6 Line of Sight (LOS) and 14 Non-Line of Sight (NLOS) locations. Analysis of the path loss (PL) reveals lower directional and omnidirectional PL exponents compared to mmWave and sub-THz frequencies in the UMi environment, using the close-in PL model with a 1 m reference distance. Additionally, a decreasing trend in root mean square (RMS) delay spread (DS) and angular spread (AS) with increasing frequency was observed. The NLOS RMS DS and RMS AS mean values are obtained consistently lower compared to 3GPP model predictions. Point data for all measured statistics at each TX-RX location are provided to supplement the models and results. The spatio-temporal statistics evaluated here offer valuable insights for the design of next-generation wireless systems and networks.
Abstract:Extensive work has been carried out in the past year by various organizations in an effort to determine standardized statistical channel impulse response (CIR) parameters for the newly-released mid-band spectrum (7.25 GHz -- 24.25 GHz) [1]--[5]. In this work, we show that the wireless community currently lacks a unified method for presenting key parameters required for transparency and utilization by several constituencies when presenting propagation data for use by standard bodies or third parties to create statistical CIR models. This paper aims to solve the existing problem by offering a standard method for providing key propagation parameters such as bandwidth, antenna beamwidth, noise-threshold level, and coarseness in point form, for use in creating standards or comparing parameters, rather than providing commonly-used cumulative distribution function (CDF) plots, which hide the observed key statistics on a location-by-location, point-by-point basis. The method for presenting propagation data, proposed here, may be used for statistical channel modeling of pooled datasets from many contributors, additionally also holding promise for exploring ray-tracing (e.g. site-specific) channel modeling. The indoor hotspot (InH) data collected in Spring2024 at 6.75 GHz and 16.95 GHZ by NYU WIRELESS [1]--[3] is provided for the first time in point form, to augment statistical models previously presented solely as CDFs, to demonstrate how a standardized approach to measurement data could allow others to utilize the site-specific locations and key channel parameters observed at each location, to better understand, vet, and build upon statistical or site-specific CIRs from the contributions of many different data sources.
Abstract:We present detailed multipath propagation spatial statistics for next-generation wireless systems operating at lower and upper mid-band frequencies spanning 6--24 GHz. The large-scale spatial characteristics of the wireless channel include Azimuth angular Spread of Departure (ASD) and Zenith angular Spread of Departure (ZSD) of multipath components (MPC) from a transmitter and the Azimuth angular Spread of Arrival (ASA) and Zenith angular Spread of Arrival (ZSA) at a receiver. The angular statistics calculated from measurements were compared with industry-standard 3GPP models, and ASD and ASA values were found to be in close agreement at both 6.75 GHz and 16.95 GHz. Measured LOS ASD was found larger than 3GPP ASD indicating more diverse MPC departure directions in the azimuth. ZSA and ZSD were observed smaller than the 3GPP modeling results as most multipath arrivals and departures during measurements were recorded at the boresight antenna elevation. The wide angular spreads indicate a multipath-rich spatial propagation at 6.75 GHz and 16.95 GHz, showing greater promise for the implementation of MIMO beamforming systems in the mid-band spectrum.
Abstract:This paper introduces Waste Factor (W), also denoted as Waste Figure (WF) in dB, a promising new metric for quantifying energy efficiency in a wide range of circuits and systems applications, including data centers and RANs. Also, the networks used to connect data centers and AI computing engines with users for ML applications must become more power efficient. This paper illustrates the limitations of existing energy efficiency metrics that inadequately capture the intricate energy dynamics of RAN components. We delineate the methodology for applying W across various network configurations, including MISO, SIMO, and MIMO systems, and demonstrate the effectiveness of W in identifying energy optimization opportunities. Our findings reveal that W not only offers nuanced insights into the energy performance of RANs but also facilitates informed decision-making for network design and operational efficiency. Furthermore, we show how W can be integrated with other KPIs to guide the development of optimal strategies for enhancing network energy efficiency under different operational conditions. Additionally, we present simulation results for a distributed multi-user MIMO system at 3.5, 17, and 28 GHz, demonstrating overall network power efficiency on a per square kilometer basis, and show how overall W decreases with an increasing number of base stations and increasing carrier frequency. This paper shows that adopting W as a figure of merit can significantly contribute to the sustainability and energy optimization of next-generation wireless communication networks, paving the way for greener and more sustainable, energy-efficient 5G and 6G technologies.
Abstract:New spectrum allocations in the 4--8 GHz FR1(C) and 7--24 GHz FR3 mid-band frequency spectrum are being considered for 5G/6G cellular deployments. This paper presents results from the world's first comprehensive indoor hotspot (InH) propagation measurement campaign at 6.75 GHz and 16.95 GHz in the NYU WIRELESS Research Center using a 1 GHz wideband channel sounder system over distances from 11 to 97 m in line-of-sight (LOS) and non-LOS (NLOS). Analysis of directional and omnidirectional path loss (PL) using the close-in free space 1 m reference distance model shows a familiar waveguiding effect in LOS with an omnidirectional path loss exponent (PLE) of 1.40 at 6.75 GHz and 1.32 at 16.95 GHz. Compared to mmWave frequencies, the directional NLOS PLEs are lower at FR3 and FR1(C), while omnidirectional NLOS PLEs are similar, suggesting better propagation distances at lower frequencies for links with omnidirectional antennas at both ends of the links, but also, importantly, showing that higher gain antennas will offer better coverage at higher frequencies when antenna apertures are kept same over all frequencies. Comparison of the omnidirectional and directional RMS delay spread (DS) at FR1(C) and FR3 with mmWave frequencies indicates a clear decrease with increasing frequency. The mean spatial lobe and omnidirectional RMS angular spread (AS) is found to be wider at 6.75 GHz compared to 16.95 GHz indicating more multipath components are found in the azimuthal spatial domain at lower frequencies.
Abstract:The 4--8 GHz FR1(C) and 7--24 GHz upper mid-band FR3 spectrum are promising new 6G spectrum allocations being considered by the International Telecommunications Union (ITU) and major governments around the world. There is an urgent need to understand the propagation behavior and radio coverage, outage, and material penetration for the global mobile wireless industry in both indoor and outdoor environments in these emerging frequency bands. This work presents measurements and models that describe the penetration loss in co-polarized and cross-polarized antenna configurations, exhibited by common materials found inside buildings and on building perimeters, including concrete, low-emissivity glass, wood, doors, drywall, and whiteboard at 6.75 GHz and 16.95 GHz. Measurement results show consistent lower penetration loss at 6.75 GHz compared to 16.95 GHz for all ten materials measured for co and cross-polarized antennas at incidence. For instance, the low-emissivity glass wall presents 33.7 dB loss at 6.75 GHz, while presenting 42.3 dB loss at 16.95 GHz. Penetration loss at these frequencies is contrasted with measurements at sub-6 GHz, mmWave and sub-THz frequencies along with 3GPP material penetration loss models. The results provide critical knowledge for future 5G and 6G cellular system deployments as well as refinements for the 3GPP material penetration models.
Abstract:This paper introduces Waste Factor (W) and Waste Figure (WF) to assess power efficiency in any multiple-input multiple-output (MIMO) or single-input multiple-output (SIMO) or multiple-input single-output (MISO) cascaded communication system. This paper builds upon the new theory of Waste Factor, which systematically models added wasted power in any cascade for parallel systems such as MISO, SIMO, and MIMO systems, which are prevalent in current wireless networks. Here, we also show the advantage of W compared to conventional metrics for quantifying and analyzing energy efficiency. This work explores the utility of W in assessing energy efficiency in communication channels, within Radio Access Networks (RANs).
Abstract:In this paper, we expand upon a new metric called the Waste Factor ($W$), a mathematical framework used to evaluate power efficiency in cascaded communication systems, by accounting for power wasted in individual components along a cascade. We show that the derivation of the Waste Factor, a unifying metric for defining wasted power along the signal path of any cascade, is similar to the mathematical approach used by H. Friis in 1944 to develop the Noise Factor ($F$), which has since served as a unifying metric for quantifying additive noise power in a cascade. Furthermore, the mathematical formulation of $W$ can be utilized in artificial intelligence (AI) and machine learning (ML) design and control for enhanced power efficiency. We consider the power usage effectiveness (PUE), which is a widely used energy efficiency metric for data centers, to evaluate $W$ for the data center as a whole. The use of $W$ allows easy comparison of power efficiency between data centers and their components. Our study further explores how insertion loss of components in a cascaded communication system influences $W$ at 28 GHz and 142 GHz along with the data rate performance, evaluated using the consumption efficiency factor (CEF). We observe CEF's marked sensitivity, particularly to phase shifter insertion loss changes. Notably, CEF variations are more prominent in uplink transmissions, whereas downlink transmissions offer relative CEF stability. Our exploration also covers the effects of varying User Equipment (UE) and Base Station (BS) deployment density on CEF in cellular networks. This work underscores the enhanced energy efficiency at 142 GHz, compared to 28 GHz, as UE and BS numbers escalate.
Abstract:Radio channels at mmWave and sub-THz frequencies for 5G and 6G communications offer large channel bandwidths (hundreds of MHz to several GHz) to achieve multi-Gbps data rates. Accurate modeling of the radio channel for these wide bandwidths requires capturing the absolute timing of multipath component (MPC) propagation delays with sub-nanosecond accuracy. Achieving such timing accuracy is challenging due to clock drift in untethered transmitter (TX) and receiver (RX) clocks used in time-domain channel sounders, yet will become vital in many future 6G applications. This paper proposes a novel solution utilizing precision time protocol (PTP) and periodic drift correction to achieve absolute timing for MPCs in power delay profiles (PDPs) --captured as discrete samples using sliding correlation channel sounders. Two RaspberryPi computers are programmed to implement PTP over a dedicated Wi-Fi link and synchronize the TX and RX Rubidium clocks continuously every second. This synchronization minimizes clock drift, reducing PDP sample drift to 150 samples/hour, compared to several thousand samples/hour without synchronization. Additionally, a periodic drift correction algorithm is applied to eliminate PDP sample drift and achieve sub-nanosecond timing accuracy for MPC delays. The achieved synchronicity eliminates the need for tedious and sometimes inaccurate ray tracing to synthesize omnidirectional PDPs from directional measurements. The presented solution shows promise in myriad applications, including precise position location and distributed systems that require sub-nanosecond timing accuracy and synchronization among components.