Abstract:In this study, we propose GITSR, an effective framework for Graph Interaction Transformer-based Scene Representation for multi-vehicle collaborative decision-making in intelligent transportation system. In the context of mixed traffic where Connected Automated Vehicles (CAVs) and Human Driving Vehicles (HDVs) coexist, in order to enhance the understanding of the environment by CAVs to improve decision-making capabilities, this framework focuses on efficient scene representation and the modeling of spatial interaction behaviors of traffic states. We first extract features of the driving environment based on the background of intelligent networking. Subsequently, the local scene representation, which is based on the agent-centric and dynamic occupation grid, is calculated by the Transformer module. Besides, feasible region of the map is captured through the multi-head attention mechanism to reduce the collision of vehicles. Notably, spatial interaction behaviors, based on motion information, are modeled as graph structures and extracted via Graph Neural Network (GNN). Ultimately, the collaborative decision-making among multiple vehicles is formulated as a Markov Decision Process (MDP), with driving actions output by Reinforcement Learning (RL) algorithms. Our algorithmic validation is executed within the extremely challenging scenario of highway off-ramp task, thereby substantiating the superiority of agent-centric approach to scene representation. Simulation results demonstrate that the GITSR method can not only effectively capture scene representation but also extract spatial interaction data, outperforming the baseline method across various comparative metrics.
Abstract:For driving safely and efficiently in highway scenarios, autonomous vehicles (AVs) must be able to predict future behaviors of surrounding object vehicles (OVs), and assess collision risk accurately for reasonable decision-making. Aiming at autonomous driving in highway scenarios, a predictive collision risk assessment method based on trajectory prediction of OVs is proposed in this paper. Firstly, the vehicle trajectory prediction is formulated as a sequence generation task with long short-term memory (LSTM) encoder-decoder framework. Convolutional social pooling (CSP) and graph attention network (GAN) are adopted for extracting local spatial vehicle interactions and distant spatial vehicle interactions, respectively. Then, two basic risk metrics, time-to-collision (TTC) and minimal distance margin (MDM), are calculated between the predicted trajectory of OV and the candidate trajectory of AV. Consequently, a time-continuous risk function is constructed with temporal and spatial risk metrics. Finally, the vehicle trajectory prediction model CSP-GAN-LSTM is evaluated on two public highway datasets. The quantitative results indicate that the proposed CSP-GAN-LSTM model outperforms the existing state-of-the-art (SOTA) methods in terms of position prediction accuracy. Besides, simulation results in typical highway scenarios further validate the feasibility and effectiveness of the proposed predictive collision risk assessment method.