Abstract:The title of a research paper communicates in a succinct style the main theme and, sometimes, the findings of the paper. Coming up with the right title is often an arduous task, and therefore, it would be beneficial to authors if title generation can be automated. In this paper, we fine-tune pre-trained and large language models to generate titles of papers from their abstracts. We also use ChatGPT in a zero-shot setting to generate paper titles. The performance of the models is measured with ROUGE, METEOR, MoverScore, BERTScore and SciBERTScore metrics.
Abstract:Financial sentiment analysis allows financial institutions like Banks and Insurance Companies to better manage the credit scoring of their customers in a better way. Financial domain uses specialized mechanisms which makes sentiment analysis difficult. In this paper, we propose a pre-trained language model which can help to solve this problem with fewer labelled data. We extend on the principles of Transfer learning and Transformation architecture principles and also take into consideration recent outbreak of pandemics like COVID. We apply the sentiment analysis to two different sets of data. We also take smaller training set and fine tune the same as part of the model.
Abstract:Topic modeling is a widely used approach for analyzing and exploring large document collections. Recent research efforts have incorporated pre-trained contextualized language models, such as BERT embeddings, into topic modeling. However, they often neglect the intrinsic informational value conveyed by mutual dependencies between words. In this study, we introduce GINopic, a topic modeling framework based on graph isomorphism networks to capture the correlation between words. By conducting intrinsic (quantitative as well as qualitative) and extrinsic evaluations on diverse benchmark datasets, we demonstrate the effectiveness of GINopic compared to existing topic models and highlight its potential for advancing topic modeling.
Abstract:Hallucination in text summarization refers to the phenomenon where the model generates information that is not supported by the input source document. Hallucination poses significant obstacles to the accuracy and reliability of the generated summaries. In this paper, we aim to reduce hallucinated outputs or hallucinations in summaries of long-form text documents. We have used the PubMed dataset, which contains long scientific research documents and their abstracts. We have incorporated the techniques of data filtering and joint entity and summary generation (JAENS) in the fine-tuning of the Longformer Encoder-Decoder (LED) model to minimize hallucinations and thereby improve the quality of the generated summary. We have used the following metrics to measure factual consistency at the entity level: precision-source, and F1-target. Our experiments show that the fine-tuned LED model performs well in generating the paper abstract. Data filtering techniques based on some preprocessing steps reduce entity-level hallucinations in the generated summaries in terms of some of the factual consistency metrics.
Abstract:Citations in scientific papers not only help us trace the intellectual lineage but also are a useful indicator of the scientific significance of the work. Citation intents prove beneficial as they specify the role of the citation in a given context. In this paper, we present CitePrompt, a framework which uses the hitherto unexplored approach of prompt-based learning for citation intent classification. We argue that with the proper choice of the pretrained language model, the prompt template, and the prompt verbalizer, we can not only get results that are better than or comparable to those obtained with the state-of-the-art methods but also do it with much less exterior information about the scientific document. We report state-of-the-art results on the ACL-ARC dataset, and also show significant improvement on the SciCite dataset over all baseline models except one. As suitably large labelled datasets for citation intent classification can be quite hard to find, in a first, we propose the conversion of this task to the few-shot and zero-shot settings. For the ACL-ARC dataset, we report a 53.86% F1 score for the zero-shot setting, which improves to 63.61% and 66.99% for the 5-shot and 10-shot settings, respectively.
Abstract:The TCPD-IPD dataset is a collection of questions and answers discussed in the Lower House of the Parliament of India during the Question Hour between 1999 and 2019. Although it is difficult to analyze such a huge collection manually, modern text analysis tools can provide a powerful means to navigate it. In this paper, we perform an exploratory analysis of the dataset. In particular, we present insightful corpus-level statistics and a detailed analysis of three subsets of the dataset. In the latter analysis, the focus is on understanding the temporal evolution of topics using a dynamic topic model. We observe that the parliamentary conversation indeed mirrors the political and socio-economic tensions of each period.
Abstract:Dropout is a widely used regularization trick to resolve the overfitting issue in large feedforward neural networks trained on a small dataset, which performs poorly on the held-out test subset. Although the effectiveness of this regularization trick has been extensively studied for convolutional neural networks, there is a lack of analysis of it for unsupervised models and in particular, VAE-based neural topic models. In this paper, we have analyzed the consequences of dropout in the encoder as well as in the decoder of the VAE architecture in three widely used neural topic models, namely, contextualized topic model (CTM), ProdLDA, and embedded topic model (ETM) using four publicly available datasets. We characterize the dropout effect on these models in terms of the quality and predictive performance of the generated topics.
Abstract:Topic modeling is a dominant method for exploring document collections on the web and in digital libraries. Recent approaches to topic modeling use pretrained contextualized language models and variational autoencoders. However, large neural topic models have a considerable memory footprint. In this paper, we propose a knowledge distillation framework to compress a contextualized topic model without loss in topic quality. In particular, the proposed distillation objective is to minimize the cross-entropy of the soft labels produced by the teacher and the student models, as well as to minimize the squared 2-Wasserstein distance between the latent distributions learned by the two models. Experiments on two publicly available datasets show that the student trained with knowledge distillation achieves topic coherence much higher than that of the original student model, and even surpasses the teacher while containing far fewer parameters than the teacher's. The distilled model also outperforms several other competitive topic models on topic coherence.
Abstract:Topic modeling has emerged as a dominant method for exploring large document collections. Recent approaches to topic modeling use large contextualized language models and variational autoencoders. In this paper, we propose a negative sampling mechanism for a contextualized topic model to improve the quality of the generated topics. In particular, during model training, we perturb the generated document-topic vector and use a triplet loss to encourage the document reconstructed from the correct document-topic vector to be similar to the input document and dissimilar to the document reconstructed from the perturbed vector. Experiments for different topic counts on three publicly available benchmark datasets show that in most cases, our approach leads to an increase in topic coherence over that of the baselines. Our model also achieves very high topic diversity.
Abstract:In todays era huge volume of information exists everywhere. Therefore, it is very crucial to evaluate that information and extract useful, and often summarized, information out of it so that it may be used for relevant purposes. This extraction can be achieved through a crucial technique of artificial intelligence, namely, machine learning. Indeed automatic text summarization has emerged as an important application of machine learning in text processing. In this paper, an english text summarizer has been built with GRU-based encoder and decoder. Bahdanau attention mechanism has been added to overcome the problem of handling long sequences in the input text. A news-summary dataset has been used to train the model. The output is observed to outperform competitive models in the literature. The generated summary can be used as a newspaper headline.