Abstract:Online Multi-Object Tracking (MOT) from videos is a challenging computer vision task which has been extensively studied for decades. Most of the existing MOT algorithms are based on the Tracking-by-Detection (TBD) paradigm combined with popular machine learning approaches which largely reduce the human effort to tune algorithm parameters. However, the commonly used supervised learning approaches require the labeled data (e.g., bounding boxes), which is expensive for videos. Also, the TBD framework is usually suboptimal since it is not end-to-end, i.e., it considers the task as detection and tracking, but not jointly. To achieve both label-free and end-to-end learning of MOT, we propose a Tracking-by-Animation framework, where a differentiable neural model first tracks objects from input frames and then animates these objects into reconstructed frames. Learning is then driven by the reconstruction error through backpropagation. We further propose a Reprioritized Attentive Tracking to improve the robustness of data association. Experiments conducted on both synthetic and real video datasets show the potential of the proposed model.
Abstract:Long Short-Term Memory (LSTM) is a popular approach to boosting the ability of Recurrent Neural Networks to store longer term temporal information. The capacity of an LSTM network can be increased by widening and adding layers. However, usually the former introduces additional parameters, while the latter increases the runtime. As an alternative we propose the Tensorized LSTM in which the hidden states are represented by tensors and updated via a cross-layer convolution. By increasing the tensor size, the network can be widened efficiently without additional parameters since the parameters are shared across different locations in the tensor; by delaying the output, the network can be deepened implicitly with little additional runtime since deep computations for each timestep are merged into temporal computations of the sequence. Experiments conducted on five challenging sequence learning tasks show the potential of the proposed model.