Abstract:Bayesian optimization (BO) algorithm is very popular for solving low-dimensional expensive optimization problems. Extending Bayesian optimization to high dimension is a meaningful but challenging task. One of the major challenges is that it is difficult to find good infill solutions as the acquisition functions are also high-dimensional. In this work, we propose the expected coordinate improvement (ECI) criterion for high-dimensional Bayesian optimization. The proposed ECI criterion measures the potential improvement we can get by moving the current best solution along one coordinate. The proposed approach selects the coordinate with the highest ECI value to refine in each iteration and covers all the coordinates gradually by iterating over the coordinates. The greatest advantage of the proposed ECI-BO (expected coordinate improvement based Bayesian optimization) algorithm over the standard BO algorithm is that the infill selection problem of the proposed algorithm is always a one-dimensional problem thus can be easily solved. Numerical experiments show that the proposed algorithm can achieve significantly better results than the standard BO algorithm and competitive results when compared with five state-of-the-art high-dimensional BOs. This work provides a simple but efficient approach for high-dimensional Bayesian optimization.
Abstract:Time series data usually contains local and global patterns. Most of the existing feature networks pay more attention to local features rather than the relationships among them. The latter is, however, also important yet more difficult to explore. To obtain sufficient representations by a feature network is still challenging. To this end, we propose a novel robust temporal feature network (RTFN) for feature extraction in time series classification, containing a temporal feature network (TFN) and an LSTM-based attention network (LSTMaN). TFN is a residual structure with multiple convolutional layers. It functions as a local-feature extraction network to mine sufficient local features from data. LSTMaN is composed of two identical layers, where attention and long short-term memory (LSTM) networks are hybridized. This network acts as a relation extraction network to discover the intrinsic relationships among the extracted features at different positions in sequential data. In experiments, we embed RTFN into a supervised structure as a feature extractor and into an unsupervised structure as an encoder, respectively. The results show that the RTFN-based structures achieve excellent supervised and unsupervised performance on a large number of UCR2018 and UEA2018 datasets.