Abstract:Relic landslide, formed over a long period, possess the potential for reactivation, making them a hazardous geological phenomenon. While reliable relic landslide detection benefits the effective monitoring and prevention of landslide disaster, semantic segmentation using high-resolution remote sensing images for relic landslides faces many challenges, including the object visual blur problem, due to the changes of appearance caused by prolonged natural evolution and human activities, and the small-sized dataset problem, due to difficulty in recognizing and labelling the samples. To address these challenges, a semantic segmentation model, termed mask-recovering and interactive-feature-enhancing (MRIFE), is proposed for more efficient feature extraction and separation. Specifically, a contrastive learning and mask reconstruction method with locally significant feature enhancement is proposed to improve the ability to distinguish between the target and background and represent landslide semantic features. Meanwhile, a dual-branch interactive feature enhancement architecture is used to enrich the extracted features and address the issue of visual ambiguity. Self-distillation learning is introduced to leverage the feature diversity both within and between samples for contrastive learning, improving sample utilization, accelerating model convergence, and effectively addressing the problem of the small-sized dataset. The proposed MRIFE is evaluated on a real relic landslide dataset, and experimental results show that it greatly improves the performance of relic landslide detection. For the semantic segmentation task, compared to the baseline, the precision increases from 0.4226 to 0.5347, the mean intersection over union (IoU) increases from 0.6405 to 0.6680, the landslide IoU increases from 0.3381 to 0.3934, and the F1-score increases from 0.5054 to 0.5646.
Abstract:Landslides are one of the most destructive natural disasters in the world, posing a serious threat to human life and safety. The development of foundation models has provided a new research paradigm for large-scale landslide detection. The Segment Anything Model (SAM) has garnered widespread attention in the field of image segmentation. However, our experiment found that SAM performed poorly in the task of landslide segmentation. We propose TransLandSeg, which is a transfer learning approach for landslide semantic segmentation based on a vision foundation model (VFM). TransLandSeg outperforms traditional semantic segmentation models on both the Landslide4Sense dataset and the Bijie landslide dataset. Our proposed adaptive transfer learning (ATL) architecture enables the powerful segmentation capability of SAM to be transferred to landslide detection by training only 1.3% of the number of the parameters of SAM, which greatly improves the training efficiency of the model. Finally we also conducted ablation experiments on models with different ATL structures, concluded that the deployment location and residual connection of ATL play an important role in TransLandSeg accuracy improvement.
Abstract:As a harzard disaster, landslide often brings tremendous losses to humanity, so it's necessary to achieve reliable detection of landslide. However, the problems of visual blur and small-sized dataset cause great challenges for old landslide detection task when using remote sensing data. To reliably extract semantic features, a hyper-pixel-wise contrastive learning augmented segmentation network (HPCL-Net) is proposed, which augments the local salient feature extraction from the boundaries of landslides through HPCL and fuses the heterogeneous infromation in the semantic space from High-Resolution Remote Sensing Images and Digital Elevation Model Data data. For full utilization of the precious samples, a global hyper-pixel-wise sample pair queues-based contrastive learning method, which includes the construction of global queues that store hyper-pixel-wise samples and the updating scheme of a momentum encoder, is developed, reliably enhancing the extraction ability of semantic features. The proposed HPCL-Net is evaluated on a Loess Plateau old landslide dataset and experiment results show that the model greatly improves the reliablity of old landslide detection compared to the previous old landslide segmentation model, where mIoU metric is increased from 0.620 to 0.651, Landslide IoU metric is increased from 0.334 to 0.394 and F1-score metric is increased from 0.501 to 0.565.
Abstract:Huge challenges exist for old landslide detection because their morphology features have been partially or strongly transformed over a long time and have little difference from their surrounding. Besides, small-sample problem also restrict in-depth learning. In this paper, an iterative classification and semantic segmentation network (ICSSN) is developed, which can greatly enhance both object-level and pixel-level classification performance by iteratively upgrading the feature extractor shared by two network. An object-level contrastive learning (OCL) strategy is employed in the object classification sub-network featuring a siamese network to realize the global features extraction, and a sub-object-level contrastive learning (SOCL) paradigm is designed in the semantic segmentation sub-network to efficiently extract salient features from boundaries of landslides. Moreover, an iterative training strategy is elaborated to fuse features in semantic space such that both object-level and pixel-level classification performance are improved. The proposed ICSSN is evaluated on the real landslide data set, and the experimental results show that ICSSN can greatly improve the classification and segmentation accuracy of old landslide detection. For the semantic segmentation task, compared to the baseline, the F1 score increases from 0.5054 to 0.5448, the mIoU improves from 0.6405 to 0.6610, the landslide IoU improved from 0.3381 to 0.3743, and the object-level detection accuracy of old landslides is enhanced from 0.55 to 0.9. For the object classification task, the F1 score increases from 0.8846 to 0.9230, and the accuracy score is up from 0.8375 to 0.8875.
Abstract:Extracting roads from high-resolution remote sensing images (HRSIs) is vital in a wide variety of applications, such as autonomous driving, path planning, and road navigation. Due to the long and thin shape as well as the shades induced by vegetation and buildings, small-sized roads are more difficult to discern. In order to improve the reliability and accuracy of small-sized road extraction when roads of multiple sizes coexist in an HRSI, an enhanced deep neural network model termed Dual-Decoder-U-Net (DDU-Net) is proposed in this paper. Motivated by the U-Net model, a small decoder is added to form a dual-decoder structure for more detailed features. In addition, we introduce the dilated convolution attention module (DCAM) between the encoder and decoders to increase the receptive field as well as to distill multi-scale features through cascading dilated convolution and global average pooling. The convolutional block attention module (CBAM) is also embedded in the parallel dilated convolution and pooling branches to capture more attention-aware features. Extensive experiments are conducted on the Massachusetts Roads dataset with experimental results showing that the proposed model outperforms the state-of-the-art DenseUNet, DeepLabv3+ and D-LinkNet by 6.5%, 3.3%, and 2.1% in the mean Intersection over Union (mIoU), and by 4%, 4.8%, and 3.1% in the F1 score, respectively. Both ablation and heatmap analyses are presented to validate the effectiveness of the proposed model.