Abstract:Prognosis prediction is crucial for determining optimal treatment plans for lung cancer patients. Traditionally, such predictions relied on models developed from retrospective patient data. Recently, large language models (LLMs) have gained attention for their ability to process and generate text based on extensive learned knowledge. In this study, we evaluate the potential of GPT-4o mini and GPT-3.5 in predicting the prognosis of lung cancer patients. We collected two prognosis datasets, i.e., survival and post-operative complication datasets, and designed multiple tasks to assess the models' performance comprehensively. Logistic regression models were also developed as baselines for comparison. The experimental results demonstrate that LLMs can achieve competitive, and in some tasks superior, performance in lung cancer prognosis prediction compared to data-driven logistic regression models despite not using additional patient data. These findings suggest that LLMs can be effective tools for prognosis prediction in lung cancer, particularly when patient data is limited or unavailable.
Abstract:Lymph node metastasis (LNM) is a crucial factor in determining the initial treatment for patients with lung cancer, yet accurate preoperative diagnosis of LNM remains challenging. Recently, large language models (LLMs) have garnered significant attention due to their remarkable text generation capabilities. Leveraging the extensive medical knowledge learned from vast corpora, LLMs can estimate probabilities for clinical problems, though their performance has historically been inferior to data-driven machine learning models. In this paper, we propose a novel ensemble method that combines the medical knowledge acquired by LLMs with the latent patterns identified by machine learning models to enhance LNM prediction performance. Initially, we developed machine learning models using patient data. We then designed a prompt template to integrate the patient data with the predicted probability from the machine learning model. Subsequently, we instructed GPT-4o, the most advanced LLM developed by OpenAI, to estimate the likelihood of LNM based on patient data and then adjust the estimate using the machine learning output. Finally, we collected three outputs from the GPT-4o using the same prompt and ensembled these results as the final prediction. Using the proposed method, our models achieved an AUC value of 0.765 and an AP value of 0.415 for LNM prediction, significantly improving predictive performance compared to baseline machine learning models. The experimental results indicate that GPT-4o can effectively leverage its medical knowledge and the probabilities predicted by machine learning models to achieve more accurate LNM predictions. These findings demonstrate that LLMs can perform well in clinical risk prediction tasks, offering a new paradigm for integrating medical knowledge and patient data in clinical predictions.
Abstract:Large language models (LLMs) like ChatGPT show excellent capabilities in various natural language processing tasks, especially for text generation. The effectiveness of LLMs in summarizing radiology report impressions remains unclear. In this study, we explore the capability of eight LLMs on the radiology report impression summarization. Three types of radiology reports, i.e., CT, PET-CT, and Ultrasound reports, are collected from Peking University Cancer Hospital and Institute. We use the report findings to construct the zero-shot, one-shot, and three-shot prompts with complete example reports to generate the impressions. Besides the automatic quantitative evaluation metrics, we define five human evaluation metrics, i.e., completeness, correctness, conciseness, verisimilitude, and replaceability, to evaluate the semantics of the generated impressions. Two thoracic surgeons (ZSY and LB) and one radiologist (LQ) compare the generated impressions with the reference impressions and score each impression under the five human evaluation metrics. Experimental results show that there is a gap between the generated impressions and reference impressions. Although the LLMs achieve comparable performance in completeness and correctness, the conciseness and verisimilitude scores are not very high. Using few-shot prompts can improve the LLMs' performance in conciseness and verisimilitude, but the clinicians still think the LLMs can not replace the radiologists in summarizing the radiology impressions.
Abstract:Electronic health records contain an enormous amount of valuable information, but many are recorded in free text. Information extraction is the strategy to transform the sequence of characters into structured data, which can be employed for secondary analysis. However, the traditional information extraction components, such as named entity recognition and relation extraction, require annotated data to optimize the model parameters, which has become one of the major bottlenecks in building information extraction systems. With the large language models achieving good performances on various downstream NLP tasks without parameter tuning, it becomes possible to use large language models for zero-shot information extraction. In this study, we aim to explore whether the most popular large language model, ChatGPT, can extract useful information from the radiological reports. We first design the prompt template for the interested information in the CT reports. Then, we generate the prompts by combining the prompt template with the CT reports as the inputs of ChatGPT to obtain the responses. A post-processing module is developed to transform the responses into structured extraction results. We conducted the experiments with 847 CT reports collected from Peking University Cancer Hospital. The experimental results indicate that ChatGPT can achieve competitive performances for some extraction tasks compared with the baseline information extraction system, but some limitations need to be further improved.