Abstract:We consider the problem of unfair discrimination between two groups and propose a pre-processing method to achieve fairness. Corrective methods like statistical parity usually lead to bad accuracy and do not really achieve fairness in situations where there is a correlation between the sensitive attribute S and the legitimate attribute E (explanatory variable) that should determine the decision. To overcome these drawbacks, other notions of fairness have been proposed, in particular, conditional statistical parity and equal opportunity. However, E is often not directly observable in the data, i.e., it is a latent variable. We may observe some other variable Z representing E, but the problem is that Z may also be affected by S, hence Z itself can be biased. To deal with this problem, we propose BaBE (Bayesian Bias Elimination), an approach based on a combination of Bayes inference and the Expectation-Maximization method, to estimate the most likely value of E for a given Z for each group. The decision can then be based directly on the estimated E. We show, by experiments on synthetic and real data sets, that our approach provides a good level of fairness as well as high accuracy.
Abstract:Deep neural networks (DNNs) have shown to perform very well on large scale object recognition problems and lead to widespread use for real-world applications, including situations where DNN are implemented as "black boxes". A promising approach to secure their use is to accept decisions that are likely to be correct while discarding the others. In this work, we propose DOCTOR, a simple method that aims to identify whether the prediction of a DNN classifier should (or should not) be trusted so that, consequently, it would be possible to accept it or to reject it. Two scenarios are investigated: Totally Black Box (TBB) where only the soft-predictions are available and Partially Black Box (PBB) where gradient-propagation to perform input pre-processing is allowed. Empirically, we show that DOCTOR outperforms all state-of-the-art methods on various well-known images and sentiment analysis datasets. In particular, we observe a reduction of up to $4\%$ of the false rejection rate (FRR) in the PBB scenario. DOCTOR can be applied to any pre-trained model, it does not require prior information about the underlying dataset and is as simple as the simplest available methods in the literature.